首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
软土侧向大变形将是造成地铁车站结构严重震害的主要因素。为了明确软土层埋深对地铁车站结构地震反应的影响规律,对常见的两层三跨岛式地铁车站结构侧向和底部地基中存在不同埋深软土层时5种软场地和1个一般场地条件下地铁车站结构的地震反应进行了数值模拟分析。计算中采用自行建立的软土记忆型黏塑性动力本构模型模拟软土的动力非线性特性,混凝土的动力特性采用黏塑性动力损伤模型。给出了软土层不同埋深对地铁车站结构的加速度反应、侧向摆动位移反应和应力反应的影响规律,为提高软土地基上城市地铁车站结构的抗震性能及其抗震设计方法提供了依据。  相似文献   

2.
针对目前缺乏对现有地铁地下车站结构抗震性能水平的认识,根据相关规范的规定,设计了7种研究不同场地类别,并考虑输入地震动强度,分析了两层三跨框架式地铁地下车站结构的动力损伤特性及其抗震水平。结果表明,地铁地下车站结构的弹性和弹塑性工作性态层间位移角限值分别小于地面钢筋混凝土框架结构的对应值;同时,地铁地下车站结构从弹性极限工作状态到弹塑性极限工作状态所对应的层间位移角的差值也较小,说明其抗震延性明显比地面钢筋混凝土框架结构的要差。基于计算结果,分析了不同输入地震动强度下地下结构层间位移角、结构与土体的刚度比和输入峰值加速度之间的关系,建立了该类地铁地下车站结构层间位移角随地下结构与地基的刚度比和输入地震波峰值加速度变化的预测公式,以及该类地下车站结构层间位移角限值与抗震性能水平的一一对应关系,初步给出了该类地下车站结构基于层间位移角的抗震性能水平划分和物理描述。  相似文献   

3.
地铁地下结构的抗震研究对于提高城市的防灾能力具有十分重要的意义。本文采用MIDAS GTS NX有限元分析软件建立某两层两跨地下车站结构的三维有限元计算模型,利用动力时程分析法对地下车站结构在三种地震波激励下的位移和内力响应进行计算分析。研究结果表明结构具有良好的抗震性能,中柱的地震响应比其它位置大,是整体结构的抗震薄弱部位,有必要对其加强抗震设计。  相似文献   

4.
对地铁地下车站结构的抗震问题进行研究,对于降低地铁结构在遭遇强震作用时的经济损失和人员伤亡具有十分重要的意义。通过大型岩土工程有限元分析软件MIDAS-GTS建立了地下3层车站结构的三维数值分析模型,分别采用反应位移法和动力时程分析法对车站结构进行了地震反应分析,建模过程中考虑土体与地下车站结构动力相互作用机理,得到了结构在真实地震荷载作用下的内力和变形变化规律。研究得出结论:车站结构最大层间位移角在规范限值要求的范围内,结构抵抗侧向变形能力良好;车站结构中柱与顶底板连接节点处、侧墙与各层楼板相交处、结构顶底板与侧墙相交位置附近、顶底板边跨跨中等出现了较大内力响应,为抗震薄弱部位,需加强抗震措施以提高结构整体抗震能力。研究结果可为类似地铁地下车站结构的抗震分析提供借鉴。  相似文献   

5.
基于 ABAQUS 软件的 32CPU 显式有限元并行计算集群平台,建立了深软地基土–框架式地铁地下车站结构体系三维精细化非线性地震反应分析的有限元模型,数值模拟了汶川大地震清平波、卧龙波和 100 a 超越概率 3% 的南京人工地震波作用下深软地基上三层三跨框架式地铁地下车站结构地震反应特性的差异。结果表明:大地震近场强地震动将对深软地基上地下车站结构造成严重损伤,甚至发生塑性破坏或坍塌,柱、楼板、侧墙的结合部位是抗震的不利位置,中柱为抗震最薄弱构件,输入近场地震动的峰值加速度和频谱特性对地下车站结构的地震反应均有很大影响;地下车站结构的地震反应具有明显的空间效应,且在大地震近场强地震动作用下地下结构会产生单向累积的永久位移;清平波、卧龙波作用下地下车站结构的地震反应远大于 100 a 超越概率 3% 的南京人工地震波作用下的地震反应;结构浅埋部分的地震损伤比深埋部分更大。  相似文献   

6.
针对目前地铁地下车站结构抗震性能研究中不考虑地下连续墙存在的现实问题,通过建立土–地下连续墙–复杂异跨地铁车站结构静动耦合非线性相互作用的有限元数值模型,对比分析了无地下连续墙、含单层地下连续墙及含双层地下连续墙等不同情况下异跨地铁地下车站结构的地震动力反应特征。结果表明:地下连续墙的存在仅在地震强度较小时能够显著提高车站主体结构的抗水平侧移能力,当地震强度较大时结构的水平位移增大明显;从结构层间位移的角度看,结构下层的层间位移涨幅最大,不考虑地下连续墙存在的计算结果将偏于危险;地下连续墙加强了地铁车站结构的抗侧移刚度,致使车站结构整体变形性态和内力分布发生重大变化,其中结构侧墙端部应力水平明显减小,各楼板端部的应力水平明显增大;本文计算工况中,异跨车站结构的下层中柱是抗震设计时的薄弱位置,其中以双层地下连续墙工况时的结构下层最为危险。  相似文献   

7.
以两层三跨地铁车站为研究对象,建立典型工程场地下的土–结构非线性相互作用分析模型,将基于IDA方法的结构地震易损性分析方法引入到地铁车站结构中,初步探讨适用于浅埋地下结构的地震动强度指标IM及地下结构地震响应随地震动幅值增大的变化规律,并建立浅埋地铁车站结构抗震易损性曲线,得到结构在不同地震烈度水平下的失效概率。分析结果表明:非自由场下地表处的PGA为合适的IM指标;与已有经验易损性曲线的对比结果表明易损性分析方法是可行的,可以定量的给出结构在不同性能水准下的失效概率,为地下结构的抗震设计提供参考。  相似文献   

8.
针对地铁地下车站结构中柱这一抗震薄弱构件,分别采用方形钢筋混凝土柱、圆形钢筋混凝土柱,以及本文新提出的带快速连接装置的预制钢管混凝土柱,建立了土–地下结构非线性静动力耦合相互作用的三维有限元分析模型,对比分析了采用不同中柱设计对车站主体结构地震反应特性的影响规律。结果表明:与方形中柱相比,等截面惯性矩的圆形中柱在地震中受到的损伤较小,具有更好的抗震性能。采用新提出的带快速连接装置的预制钢管混凝土柱可以有效地保证结构中柱在强地震中不受严重损伤,且具有在震后能快速更换的特点。  相似文献   

9.
针对现行地铁地下车站结构的常见叠合墙式结构设计方法和抗震分析方法中不考虑地下连续墙存在的现实情况,基于数值计算方法,建立了土–地下连续墙–地下结构静动力耦合非线性相互作用有限元分析模型,分析了地下连续墙存在时对地铁地下车站主体结构地震反应的影响规律。研究结果表明:地下连续墙的存在对地铁车站主体结构的抗水平侧移能力有一定的提高作用,使得其顶底间的最大相对位移有显著减小。从这一结果出发,似乎可以认为地下结构抗震分析中不考虑地下连续墙时可看作是地下结构的地震安全储备。但是,地下连续墙的存在明显改变地下结构的整体变形性态,进而导致地下结构的内力发生重分布,尤其使得大震时车站结构的顶、中、底板一些关键部位的地震损伤程度明显比不考虑地下连续墙时要严重;同时,地下连续墙对车站结构顶底板表面与土体间的相对摩擦剪力也产生明显的影响。  相似文献   

10.
为提高和改善地下结构抗震性能,现有地铁车站结构通常采用钢管混凝土中柱,主要考虑混凝土中柱类型对地铁车站结构的地震响应影响,以两层三跨地铁车站作为研究对象,采用OpenSees有限元软件建立土-地铁车站结构二维整体有限元模型,并基于合成人工地震动输入土-地铁车站结构整体有限元模型,对模型进行非线性时程分析,研究钢管混凝土中柱地铁车站地震响应规律。结果表明:多遇地震动和设防地震动作用下,钢管混凝土地铁车站顶层中柱最大层间位移角相较于钢筋混凝土地铁车站分别降低了5%和1%,底层中柱最大层间位移角下降幅度仅为24%和8%;罕遇地震动作用下,钢管混凝土中柱使地铁车站顶层和底层最大层间位移角分别降低了9%和7%,钢管混凝土中柱底部在最大变形时刻承受的剪力增加了7%;极端地震作用下,地铁车站结构产生较大变形,钢筋混凝土中柱出现破坏时刻钢管混凝土中柱并未破坏,钢管混凝土中柱对地铁车站结构抗震性能提升作用显著。  相似文献   

11.
为研究大跨斜撑无柱地铁车站地震响应特性,基于三维静-动力耦合非线性有限元模型,分析在不同地震动作用方向下的地震响应规律,揭示结构地震损伤演化过程。分析表明:设防地震和罕遇地震作用下车站结构的最大层间位移角分别为1/1 352和1/602,满足规范要求;地震作用对斜撑轴力、侧墙端部剪力和底板跨中弯矩的放大作用显著;随输入地震动强度的增加车站顶板加速度放大系数依次减小,竖向地震动对相对竖向位移的影响不可忽视;斜撑两端、墙板交界处和开窗周围区域是结构的抗震薄弱部位;强震作用下,车站结构塑形损伤积累且地震动空间效应显著,宜按空间问题进行抗震分析。研究成果可为类似结构的抗震设计与分析提供参考。  相似文献   

12.
 针对已有研究方法的不足,开展土–地铁车站结构静、动力耦合作用理论和计算方法的初步研究,建立土–地下结构静、动力耦合非线性相互作用的物理力学分析模型,在此基础上开展一般场地上双层多跨大型地铁车站结构在静、动力耦合作用下的力学反应及其地震成灾机制研究。研究结果表明:在静、动力耦合作用下,双层多跨大型地铁车站结构构件出现地震震害的先后顺序为:中板与侧墙连接部位处的下表面、中柱顶底端、顶板与侧墙的连接部位下表面、底板侧跨中部上表面、顶板中跨与柱的连接部位上表面;(2) 中柱的顶、底端和侧墙的底部为抗震最不利的部位,当输入地震动强度较小时,这些部位只发生局部受拉或受压破坏,当输入地震动强度增强时,这些部位往往会发生受拉和受压破坏交替出现的严重破坏;(3) 具有脉冲特性的近场地震波更易造成地铁车站结构的动力损伤或地震破坏。  相似文献   

13.
以武汉某典型两层三跨岛式地铁车站为工程背景,考虑土—结构相互作用,利用有限元软件ABAQUS对该地铁车站在水平向及水平向与竖向地震动联合作用下的地震响应规律进行了研究,研究结果可为地铁车站抗震设计提供参考。  相似文献   

14.
为研究附加减震外挂墙板结构的抗震性能,设计并制作了一个1/2缩尺的单跨两层钢筋混凝土框架结构模型,并在结构的Y方向附加减震外挂墙板形成减震结构,X方向未布置墙板,形成作为对比的抗震结构。选取两条天然地震动,分别对结构Y方向和X方向施加单向地震动,进行了多遇地震、设防地震和罕遇地震作用下的振动台试验,对比研究了两种结构的动力特性和地震响应。试验结果表明:在设防地震和罕遇地震作用下,减震结构的损伤程度和地震响应均小于抗震结构,表现出良好的减震效果;两种结构损伤最大位置均出现在框架梁端和柱底,减震外挂墙板未改变主体结构的损伤模式;试验过程中,U形金属消能器能够产生预期的履带式滚动变形,且基本保持完好;罕遇地震作用下,外挂墙板仍保持完好,表明该结构体系可有效控制外挂墙板的损伤。  相似文献   

15.
应用ABAQUS有限元分析软件对天津市滨海新区不均匀软土场地地铁车站在地震作用下的反应进行模拟分析,从车站抗震性能、土-地铁车站结构位移、有无地下连续墙存在时的地铁车站结构应力及土-地铁车站结构动力相互作用等方面展开研究。研究结果表明:覆土层厚度对地铁车站结构应力、应变有一定影响,设计时应充分考虑;地震作用下,车站中柱底部及中层楼板应力较大,且柱与楼板交接点范围内应力较大;不考虑地下连续墙影响时,地铁车站结构位移及应力均明显增大,不利于结构抗震设计。  相似文献   

16.
影响地铁车站动力响应的地震动强度参数有多种,研究地震动强度参数和结构地震响应指标的关联性对地下结构抗震设计具有重要的现实意义。为了研究近场地震动作用下适用于评价地铁地下车站的地震动强度参数,以大开地铁车站为原型,基于非线性时程分析结果,通过对22个地震动强度参数与结构地震响应指标进行双对数线性回归分析,从有效性、实用性和效益性对地震动强度参数与结构地震响应指标进行分析评价。研究结果表明:以地表峰值加速度PGA为代表的加速度型地震动参数以和加速度谱强度ASI为代表的谱相关型地震动参数更适合用于研究单层地铁车站结构,适合用于预测结构在地震作用下的动力响应;顶底板层间位移角、中柱底部剪力和中柱底部弯矩适合作为预测地铁地下结构的动力响应指标。  相似文献   

17.
层间位移角作为一项重要的抗震性能指标,往往用于评估地上或地下结构在正常使用条件下的水平位移,从而确保结构应具备的刚度。然而,由于地下地铁车站结构埋置于土体之中,受到周围土层的约束,其在地震作用下的层间位移角量值小、不易控制与监测。鉴于此,文章以典型两层三跨地铁车站为研究对象,基于大型有限元程序ABAQUS建立了土 车站结构非线性相互作用分析模型,开展了pushover弹塑性推覆分析,得到了车站结构各构件的剪力—层间位移角全过程曲线,并在此基础上确定了构件的关键性能点及其阈值,研究了地铁车站结构不同性能状态下中柱和侧墙剪力分配规律。分析结果表明,地铁车站下层中柱首先进入破坏状态;下层中柱剪力先增加后减小,但相较于车站侧墙,中柱分配到的剪力比例一直下降。在此基础上,进一步提出了归一化的柱墙剪力比作为评价地铁车站抗震性能的力学指标,可有效弥补单一位移指标的不足。  相似文献   

18.
考虑近、远场地震动作用,针对可液化场地条件下的三跨三层地铁车站结构,进行土-地下结构动力相互作用振动台模型试验,分析地铁车站结构的加速度、侧向水平位移和动应变的反应规律,研究近远场地震作用下可液化场地上地铁车站结构动力损伤特性。结果表明:不同高度处的加速度反应存在差别,结构中下部的加速度反应大于其他位置的加速度反应;比较结构侧墙和结构侧边地基土的的峰值加速度值,发现液化场地条件下结构某些部位的峰值加速度反应可能比周围场地的峰值加速度反应要大;车站结构中柱的应变反应最大,侧墙的反应次之,板的反应最小,并且底层中柱的应变反应最大值大于顶层和中层的中柱应变反应最大值。采用应变损伤度衡量结构的破坏程度,在地震动作用下车站结构底层中柱底端的损伤程度最为严重。  相似文献   

19.
马朝霞  王国波 《建筑结构》2021,51(10):73-79
周围地下空间开发结构与地铁车站连通形成地下综合体,在其相连接侧墙上进行开孔以方便通行,但开孔必定会对结构抗震性能产生影响,因此有必要分析其地震响应.以实际工程为背景,建立结构三维模型,分析不同开孔方式对结构地震响应的影响,确定地下结构空间效应以及抗震薄弱部位.分析结果表明:地下综合体中车站部分的层间位移角、柱端水平弯矩...  相似文献   

20.
广州地铁11号线将修建多座顶板加腋式大跨无柱地铁车站,为明确该地铁车站结构的地震响应特性,采用非线性地震响应数值模拟方法,研究了顶板加腋式大跨无柱地铁车站在3种地震波作用下的响应特性。研究表明:车站抗震的薄弱部位主要分布在顶板、中板、底板三者与侧墙的连接处以及底板跨中,且各构件之间的刚度差影响构件的破损状态;主频率与土体相近的Kobe波和El-Centro波对车站的破坏力度最大,薄弱部位损伤严重,而广州人工波对车站的破坏力度较小,大震下仅在薄弱部位有局部损伤。顶板加腋后会使腋角部位容易受到损坏而形成"塑性铰",从而使得沿侧墙高度的相对水平位移曲线在该位置出现拐点。根据车站结构的损伤云图及相对水平位移曲线,11m站台宽度和13m站台宽度的地震响应差别不大,地铁车站结构的跨度对其在地震作用下的响应影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号