首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Near-equiatomic nickel-titanium (nitinol) has the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. One of the most successful applications of nitinol is orthodontic archwire. One of the suitable characteristics of these wires is superelasticity, a phenomenon that allows better-tolerated loading conditions during clinical therapy. Superelastic nitinol wires deliver clinically desired light continuous force enabling effective tooth movement with minimal damage for periodontal tissues. In this research, a special three-point bending fixture was invented and designed to determine the superelastic property in simulated clinical conditions, where the wire samples were held in the fixture similar to an oral cavity. In this experimental study, the load-deflection characteristics of superelastic NiTi commercial wires were studied through three-point bending test. The superelastic behavior was investigated by focusing on bending time, temperature, and number of cycles which affects the energy dissipating capacity. Experimental results show that the NiTi archwires are well suited for cyclic load-unload dental applications. Results show reduction in superelastic property for used archwires after long-time static bending.  相似文献   

2.
In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy’s structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates’ particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.  相似文献   

3.
The near equiatomic nickel-titanium alloy is an outstanding intermetallic compound exhibiting distinctive properties associated with characteristic thermal and stress-induced martensitic transformations. The process of producing orthodontic wires has been modified to obtain the optimal shape memory behaviors. Phase transformation temperatures and load-deflection characteristics of this binary alloy are very significant variables in the performance of this alloy and can be manipulated by different thermomechanical treatments via inducing precipitation or dislocation networks in the matrix. In this study, one brand of commercial heat-activated nickel-titanium archwire (3 M Unitek) was selected and solution treated. Then, the wires annealed at 400 °C for 10, 30, and 60 min. Thermal transformation temperatures were determined using differential scanning calorimeter. It was showed that these temperatures increased with increasing the time of heat treatment and multistage transformation occurred as the result of inhomogeneities. In order to evaluate mechanical parameters of heat-treated archwires, they were placed on an arch-form fixture simulating maxillary dentition and load-deflection curves were obtained by three-point bending test at 37 °C. The results compared to as-received archwires and the best superelasticity was observed after 30 min aging.  相似文献   

4.
The aim of this work was to form NiTi and TiNiCo body temperature activated and superelastic staples for clinical joining of mandible and face bone fractures. The alloys were obtained by VIM technique. Hot and cold processing was applied to obtain wires of required diameters. The martensitic transformation was studied by DSC, XRD, and TEM. The shape memory effects were measured by a bend and free recovery ASTM F2082-06 test. The superelasticity was recorded in the tension stress-strain and by the three-point bending cycles in an instrument equipped with a Hottinger force transducer and LVDT. Excellent superelastic behavior of TiNiCo wires was obtained after cold working and annealing at 400-500 °C. The body temperature activated shape memory staples were applied for fixation of mandibular condyle fractures. In experiments on the skull models, fixation of the facial fractures by using shape memory and superelastic staples were compared. The superelastic staples were used in osteosynthesis of zygomatico-maxillo-orbital fractures.  相似文献   

5.
Ni-free Ti-based shape memory alloys (SMAs) are increasingly recognized as promising functional materials for medical applications. The mechanical properties of these metastable Ti-based SMAs are sensitive to aging and thermomechanical treatment. Effects of severe plastic deformation (SPD)-equal channel angular pressing (ECAP) and aging on superelastic behavior of Ni-free Ti-based SMAs, Ti-9.8Mo-3.9Nb-2V-3.1Al?wt.% (TMNVA) and Ti-25at.%Nb, have been investigated. The results show that the yielding strength of TMNVA alloy increases sharply with the number of ECAP processes??to greater than 1,400?MPa after two passes ECAP??but elongation of TMNVA alloy decreases severely and the plasticity is lost completely after two passes ECAP. Both ECAP process and flash annealing treatment have weak contribution to the superelastic recoverable strains of Ti-Mo-based alloy. For Ti-25at.%Nb alloy, after one pass ECAP process at 400?°C, the yielding stress increases obviously, and the recovery strain increases a little. With the further increase in the number of ECAP processes, the yielding stress and the recovery strain change little. Aging treatment at low temperature after ECAP process is in favor of superelasticity of Ti-25at.%Nb alloy. An almost completely recoverable strain of 1.5% is obtained in Ti-25at.%Nb alloy after two passes ECAP and aging at 300?°C for 1?h. The mechanisms of the effects of SPD and aging are also discussed.  相似文献   

6.
This study investigated the feasibility of microalloying strategies for improving the strength of high-carbon wire products subjected to industrial patenting heat treatments for two eutectoid steels: a 0.8C-0.5Mn-0.2Cr-0.08 V alloy (wt.%) and the same composition with an additional 100 ppm Nb. A Gleeble 3500 thermomechanical simulator (Dynamic Systems Inc., Poestenkill, NY, USA) was used to perform heat treatments consisting of a 30 s austenitization at 1093 °C, 950 °C, or 880 °C followed by a 15 s isothermal transformation step at 650 °C, 625 °C, 600 °C, or 575 °C. Vickers hardness, field-emission scanning electron microscopy, and pearlite interlamellar spacing measurements were conducted to assess the effects of the heat treatments. Niobium microalloying additions were found to provide no hardness increase, but they extended the pearlitic regime to lower isothermal transformation temperatures.  相似文献   

7.
The microstructures and mechanical properties of Ti–47 at%Ni–3 at%Fe shape memory alloy wire under the condition of severe cold-drawing at room temperature and different postdeformation annealing processes were intensively investigated using transmission electron microscope(TEM),X-ray diffraction(XRD),Vickers microhardness tester and electron tensile tester.It is indicated that the structure of the alloy evolves into a predominant amorphous structure with a trace of nanocrystalline B2 phase after the cold-drawing of 76%areal reduction.Postdeformation annealing process exerted significant influence on the microstructure and mechanical properties.Crystallization occurs when the cold-drawn wire was annealed at 300℃ for 30 min.The ultimate tensile strength and ductility as well as the superelasticity of the wire are improved significantly by cold-drawing plus postdeformation annealing.  相似文献   

8.
Martensitic transformation, mechanical and thermomechanical properties of a Ti-rich Ti52Ni23Cu25 melt spun ribbon annealed at a temperature below the crystallization temperature were studied by XRD, DSC and DMA. After annealing the initially amorphous ribbon at 400 °C for 10 h, the ribbon is fully crystallized and exhibits one-stage B2?B19 phase transformation with the temperature hysteresis of 14 °C. The annealed ribbon is composed of B2, B19 and B11-TiCu phase with (001) preferential orientation. On the stress―strain curves, the rearrangement of the martensite variants and stress-induced martensitic transformation are observed below the Mf temperature and above the Af temperature, respectively. The annealed ribbon exhibits up to 1.6% superelastic shape recovery with small stress hysteresis of 25 MPa. No flat stress-plateau is associated with the superelasticity. The annealed ribbon shows a well-defined shape memory effect during thermal cycling from ?60 to 100 °C. The transformation strain and recovery strain increase with increasing the applied external stress. Under the external stress above 150 MPa, the shape recovery strain is not sensitive to it and keeps stable at about 1.74%.  相似文献   

9.
Unique thermomechanical properties of Nitinol known as shape memory and superelasticity make it applicable for different fields such as biomedical, structural, and aerospace engineering. These unique properties are due to the comparatively large recoverable strain, which is being produced in a martensitic phase transformation. However, under certain ranges of stresses and temperatures, Nitinol wires exhibit unrecovered strain. For cyclic applications, it is important to understand the strain behavior of Nitinol wires. In this study, the unrecovered strain of different Nitinol wire diameters was investigated using constant stress experiment. Uniaxial tensile test has been also performed to find the range of critical stresses. It was observed that the unrecovered strain produced in the first loading-unloading cycle affects the total strain in the subsequent cycles. Moreover, a critical range of stress was found beyond which the unrecovered strain was negligible while the wires heated up to the range of 70-80°C, depending on the wire diameters. The unrecovered strain of wire diameters of 0.19 mm and less was found to be sensitive to the critical stress. On the other hand, for wire diameters bigger than 0.19 mm this connection between the unrecovered strain and the critical stress was not observed for the same range of heating temperature.  相似文献   

10.
通过X射线衍射分析(XRD)、透射电子显微观察(TEM)、差式扫描量热分析(DSC)与拉伸实验研究时效处理对Ti48.4Ni51.1Cr0.5合金显微组织、马氏体相变与超弹性的影响规律与机制。经400°C时效处理30 min后,合金中形成Ti3Ni4析出相。当时效温度介于400°C和500°C之间时,合金表现出两步马氏体相变。经时效处理的Ti48.4Ni51.1Cr0.5合金在室温下表现出优异的超弹性。随时效温度自300°C升高到450°C,超弹性恢复率增加。继续升高时效温度,恢复率下降。超弹性应力滞后表现出相反的变化趋势。通过分析Ti3Ni4析出相随时效处理的演化规律解释了时效处理与马氏体相变和超弹性之间的关系。  相似文献   

11.
Room temperature martensitic Nitinol alloys provide a challenge to end users of the material because they are martensitic and soft at room temperature. These are commonly referred to as Shape Memory alloys as they revert to their superelastic (pseudoelastic) form and austenitic structure at a temperature above ambient. For this study, a NiTi wire, Ti-55.3 wt.%Ni in composition (Alloy-B) and heat-treated to an Af ?? 60 °C was used. Tensile testing was performed to fully characterize the performance of the material at a series of temperatures above and below its transformation temperature. This article will summarize the properties of the material along with the effects of multiple strains on key material performance characteristics.  相似文献   

12.
A.J. Muir Wood  T.W. Clyne   《Acta Materialia》2006,54(20):1221-5615
A nickel–titanium shape memory alloy was subjected to nanoindentation over a range of temperature (up to 200 °C), such that the starting material was either predominantly martensitic or largely composed of the parent phase. The load–displacement data were interpreted to give information about whether the imposed strain was being at least partly accommodated by the martensitic phase transformation, i.e. whether superelastic deformation was taking place. This interpretation was assisted by finite element simulation of the evolving strain field under an indenter, with or without the superelastic deformation mechanism being operative. It is concluded that the nanoindentation response can be used to determine whether the material is capable of exhibiting superelastic deformation, provided appropriate procedures are employed. Spherical indenters are more suitable than sharp tips. A relatively low value for the remnant indent depth ratio (depth after unloading/depth at peak load) is indicative that superelasticity is occurring. The procedure was found to be viable with a small radius (10 μm) spherical indenter, so it can be employed to explore local variations in superelastic response.  相似文献   

13.
The effect of cyclic deformation on superelasticity was investigated in a Ti–26 at.% Nb alloy. Loading and unloading tensile tests with a constant maximum applied strain of 2.5% were carried out until the 500th cycle. The critical stress for inducing the martensitic transformation and superelastic strain decreased, while the accumulated residual strain increased with increasing number of cycles. The increase in the residual strain during cyclic deformation was due mainly to α′′ martensite phase stabilization. Both the residual strain and the residual α′′ martensite phase increased with increasing number of cycles. The stability of superelasticity was improved, i.e. the residual strain decreased and the superelastic strain increased, by intermediate-temperature annealing and/or aging. The specimen annealed at 873 K for 0.6 ks followed by aging at 573 K for 3.6 ks exhibited the most stabilized superelasticity, owing to the combination effect of work hardening and fine ω-phase precipitation.  相似文献   

14.
The paper presents the results of thermomechanical treatment via forging on the microstructure and mechanical properties of newly obtained microalloyed steel containing 0.28% C, 1.41% Mn, 0.027% Nb, 0.028% Ti, and 0.019% V. The investigated steel is assigned to the production of forged elements for the automotive industry. Conditions of forging using the thermomechanical processing method were developed based on plastometric tests. Continuous and double-hit compression tests were conducted using the Gleeble 3800 thermomechanical simulator. The samples were investigated in a temperature range from 900 to 1100 °C and a strain rate of 1 and 10 s?1. To determine the recrystallization kinetics of plastically deformed austenite, discontinuous compression tests of samples using the applied deformation were conducted in a temperature range from 900 to 1100 °C with isothermal holding of the specimens between successive deformations for 2-100 s. Observations of the microstructures of thin foils were conducted using a TITAN80-300 FEI transmission electron microscope. The applied thermomechanical treatment allows to obtain a fine-grained microstructure of the austenite during hot-working and production of forged parts. These acquire advantageous mechanical properties and guaranteed crack resistance after controlled cooling from the end plastic deformation temperature and successive tempering. Forgings produced using the thermomechanical treatment method, consecutively subjected to tempering in a temperature range from 550 to 650 °C, reveal values of YS0.2 which equal from 994 to 892 MPa, UTS from 1084 to 958 MPa, KV from 69 to 109 J, KV?40 from 55 to 83 J, and a hardness ranging from 360 to 300 HBW.  相似文献   

15.
This paper describes a study of explosively welded titanium-carbon steel S355J2+N plates. Following the welding, plates underwent heat treatment at temperature of 600 °C for 90 min with cooling in furnace to 300 °C and in air to room temperature. The structure of the bonding was examined by using light, scanning electron (SEM) and transmission electron microscopy. The mechanical properties before and after heat treatment were examined applying three-point bending tests with cyclic loads and hardness measurements. Fracture surfaces were investigated using computer tomography and SEM. It has been found that the bonding areas are characterized by a specific chemical composition, microstructure and microhardness. Between the steel and the Ti cladding, a strongly defected transition zone was formed and melted areas with altered chemical composition were observed. It was also demonstrated that the heat treatment commonly applied to welded steel-Ti plates had a significant and negative impact on the microstructure and mechanical properties of the welded plates due to formation of brittle intermetallic phases.  相似文献   

16.
This paper concerns the application of titanium-nickel rings in modeling the cranium. After being fixed to the osseous margins, the ring’s expansion at the same time broadens and shortens the cranium vault. The rings formed from a straight superelastic wire, flattened to an ellipse, do not show the presence of a typical force plateau but rather a pseudoelastic loop during loading-unloading in the relationship between the force and the deflection. Based on the idea that superelasticity in more complex shape-springs may be induced by the precipitation hardening process, the further studies were carried out on alloys with higher nickel contents (51.06 at.% Ni). The rings that had been formed were welded and aged at an optimal temperature and time. The improved superelastic behavior during compression and unloading the rings was obtained by introducing small deformation by drawing the quenched wires before forming the rings and aging. Very positive clinical reshaping by long-term distraction with the superelastic ring-shaped springs was achieved in young children under one year and a less spectacular effect was observed in the group of older children.  相似文献   

17.
The influence of annealing on the transformation behavior, mechanical, and functional properties of laser-welded NiTi wires was investigated. The results show that Ti3Ni4 precipitates occur after post-weld annealing and coarsen with increasing annealing temperature. The as-welded specimen exhibits one-step B2 → B19′ transformation, while the annealed ones show two-step B2 → R → B19′ transformation. Annealing at 400 °C for 1 h can improve the tensile strength and superelasticity of the welded joints. However, these properties decrease when annealing at 500 °C for 1 h. The change of mechanical and functional properties after annealing is attributed to the different size of Ti3Ni4 precipitates. Annealing to produce smaller coherent precipitates (10 nm) improves the mechanical and functional properties of the welded joints. As the Ti3Ni4 precipitates coarsen, the mechanical and functional properties decrease.  相似文献   

18.
Shape memory alloy (SMA) represents the most versatile way to realize smart materials with sensing, controlling, and actuating functions. Due to their unique mechanical and thermodynamic properties and to the possibility to obtain SMA wires with very small diameters, they are used as smart components embedded into the conventional resins or composites, obtaining active abilities, tunable properties, self-healing properties, and damping capacity. Moreover, superelastic SMAs are used to increase the impact resistance properties of composite materials. In this study, the influence of the integration of thin superelastic wires to suppress propagating damage of composite structures has been investigated. Superelastic SMAs have very high strain to failure and recoverable elastic strain, due to a stress-induced martensitic phase transition creating a plateau region in the stress-strain curve. NiTi superelastic wires (A f = ?15 °C fully annealed) of 0.10 mm in diameter have been produced and characterized by SAES Getters. The straight annealed wire shows the typical flag stress-strain behavior. The measured loading plateau is about 450 MPa at ambient temperature with a recoverable elastic strain of more than 6%. For these reasons superelastic SMA fibers can absorb much more strain energy than other fibers before their failure, partly with a constant stress level. In this paper, the improvement of composite laminates impact properties by embedding SMA wires is evaluated and indications for design and manufacturing of SMA composites with high-impact properties are also given.  相似文献   

19.
The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect.  相似文献   

20.
The microstructures and crystallization behavior of Ti–47 at% Ni–3 at% Fe shape memory alloy wire under the condition of severe cold drawing at room temperature and different post-deformation annealing processes were intensively investigated using transmission electron microscope(TEM) and differential scanning calorimetry(DSC). It is indicated that the amorphous phase is dominant in the Ti50Ni47Fe3 wire after the cold drawing of 78 % areal reduction. The critical temperature for recrystalization is determined at about 300 °C. The average grain size grows from 7 up to 125 nm when annealing temperature rises from300 to 500 °C. Post-deformation annealing process exerts significant influence on the crystallization temperature which climbs up with the increase of annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号