首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
(All-E) prenyl diphosphate synthases catalyze the consecutive condensation of isopentenyl diphosphates with allylic prenyl diphosphates, producing products with various chain-lengths that are unique for each enzyme. Some short-chain (all-E) prenyl diphosphate synthases, i.e. farnesyl diphosphate synthases and geranylgeranyl diphosphate synthases contain characteristic amino acid sequences around the allylic substrate binding sites, which have been shown to play a role in determining the chain-length of the product. However, among these enzymes, which are classified into several types based on the possessive patterns of such characteristics, type III geranylgeranyl diphosphate synthases, which consist of enzymes from eukaryotes (excepting plants), lack these features. In this study, we report that mutagenesis at the second position before the conserved G(Q/E) motif, which is distant from the well-studied region, affects the chain-length of the product for a type III geranylgeranyl diphosphate synthase from Saccharomyces cerevisiae. This clearly suggests that a novel mechanism is operative in the product determination for this type of enzyme. We also show herein that mutagenesis at the corresponding position of an archaeal medium-chain enzyme also alters its product specificity. These results provide valuable information on the molecular evolution of (all-E) prenyl diphosphate synthases.  相似文献   

2.
Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 °C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 °C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C20) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).  相似文献   

3.
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.  相似文献   

4.
Directed evolution of farnesyl diphosphate (FPP, C15) synthase (IspA) of Escherichia coli was carried out by error-prone PCR with a color complementation screen utilizing C40 carotenoid pathway enzymes. This allowed IspA mutants with enhanced production of the C40 carotenoid precursor geranylgeranyl diphosphate (GGPP, C20) to be readily identified. Analysis of these mutants was carried out in order to better understand the mechanisms of product chain length specificity in this enzyme. The 12 evolved clones having enhanced C20 GGPP production have characteristic mutations in the conserved regions of prenyl diphosphate synthases (designated regions I through VII). Some of these mutations (I76T, Y79S, Y79H, C75Y, H83Y, and H83Q) are found near or before the conserved first aspartate rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl synthases. Molecular modeling suggested a mechanism for chain length determination for these mutations including substitutions at the 1st and 9th amino acids upstream of the FARM that have not been reported previously. In addition, a mutation on a helix adjacent to the FARM within the substrate-binding pocket (D115G) suggests a novel mechanism for chain length determination. One mutant IspA clone carries a mutation of C155G at the 2nd amino acid upstream of conserved region IV (GQxxDL), which was recently found to be an important region controlling the chain elongation of a Type III GGPP synthase. One IspA clone carries mutations (T234A and T249I) near the conserved second aspartate rich motif (SARM). As a verification of the in vivo activity of the mutant clones (represented as C40 carotenoid formation), we confirmed the product distribution of wild-type and mutant IspA using an in vitro assay.  相似文献   

5.
Geranylgeranyl diphosphate synthase from rat liver was separated from farnesyl diphosphate synthase, the most abundant and widely occurring prenyltransferase, by DEAE-Toyopearl column chromatography. The enzyme catalyzed the formation of E,E,E-geranylgeranyl diphosphate (V) from isopentenyl diphosphate (II) and dimethylallyl diphosphate (I), geranyl diphosphate (III), or farnesyl diphosphate (IV) with relative velocities of 0.09:0.15:1. 3-Azageranylgeranyl diphosphate (VII), designed as a transition-state analog for the geranylgeranyl diphosphate synthase reaction, was synthesized and found to act as a specific inhibitor for this synthase, but not for farnesyl diphosphate synthase. Diphosphate V and its Z,E,E-isomer (VI) also inhibited geranylgeranyl diphosphate synthase, but the effect was not as striking as that of the aza analog VII. Specific inhibition of geranylgeranyl diphosphate synthase by VII was also observed in experiments with 100,000g supernatants of rat brain and liver homogenates which contained isopentenyl diphosphate isomerase and prenyltransferases including farnesyl diphosphate synthase as well as geranylgeranyl diphosphate synthase. For farnesyl:protein transferase from rat brain, however, the aza compound did not show a stronger inhibitory effect than E,E,E-geranylgeranyl diphosphate.  相似文献   

6.
A member of the medium-chain prenyl diphosphate synthases, Bacillus stearothermophilus heptaprenyl diphosphate synthase, catalyzes the consecutive condensation of isopentenyl diphosphate with allylic diphosphate to produce (all-E)-C35 prenyl diphosphate as the ultimate product. We previously showed that the product specificity of short-chain prenyl diphosphate synthases is regulated by the structure around the first aspartate-rich motif (FARM). The FARM is also conserved in a subunit of heptaprenyl diphosphate synthase, component II', which suggests that the structure around the FARM of component II' regulates the elongation. To determine whether component II' regulates the product chain length by a mode similar to that of the short-chain prenyl diphosphate synthases, we replaced a bulky amino acid at the eighth position before the FARM of component II', isoleucine 76, by glycine and analyzed the product specificity. The mutated enzyme, I76G, can catalyze condensations of isopentenyl diphosphate beyond the native chain length of C35. Moreover, two mutated enzymes of A79Y and S80F, which have a single replacement to the aromatic residue at the fourth or the fifth position before the FARM, mainly yielded a C20 product. These results strongly suggest that a common mechanism controls the product chain length of both short-chain and medium-chain prenyl diphosphate synthases and that, in wild-type heptaprenyl diphosphate synthase, the prenyl chain can grow on the surface of the small residues at positions 79 and 80, and the elongation is precisely blocked at the length of C35 by isoleucine 76.  相似文献   

7.
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.  相似文献   

8.
Isoprenyl diphosphate synthases are ubiquitous enzymes that catalyze the basic chain-elongation reaction in the isoprene biosynthetic pathway. Pairwise sequence comparisons were made for 6 farnesyl diphosphate synthases, 6 geranylgeranyl diphosphate synthases, and a hexaprenyl diphosphate synthase. Five regions with highly conserved residues, two of which contain aspartate-rich DDXX(XX)D motifs found in many prenyltransferases, were identified. A consensus secondary structure for the group, consisting mostly of alpha-helices, was predicted for the multiply aligned sequences from amino acid compositions, computer assignments of local structure, and hydropathy indices. Progressive sequence alignments suggest that the 13 isoprenyl diphosphate synthases evolved from a common ancestor into 3 distinct clusters. The most distant separation is between yeast hexaprenyl diphosphate synthetase and the other enzymes. Except for the chromoplastic geranylgeranyl diphosphate synthase from Capsicum annuum, the remaining farnesyl and geranylgeranyl diphosphate synthases segregate into prokaryotic/archaebacterial and eukaryotic families.  相似文献   

9.
Comparison of the farnesyl diphosphate (FPP) synthase amino acid sequences from four species with amino acid sequences from the related enzymes hexaprenyl diphosphate synthase and geranylgeranyl diphosphate synthase show the presence of two aspartate rich highly conserved domains. The aspartate motif ((I, L, or V)XDDXXD) of the second of those domains has homology with at least 9 prenyl transfer enzymes that utilize an allylic prenyl diphosphate as one substrate. In order to investigate the role of this second aspartate-rich domain in rat FPP synthase, we mutated the first or third aspartate to glutamate, expressed the wild-type and mutant enzymes in Escherichia coli, and purified them to apparent homogeneity using a single chromatographic step. Approximately 12 mg of homogeneous protein was isolated from 120 mg of crude bacterial extract. The kinetic parameters of the purified wild-type recombinant FPP synthase containing the DDYLD motif were as follows: Vmax = 0.84 mumol/min/mg; GPP Km = 1.0 microM; isopentenyl diphosphate (IPP) Km = 2.7 microM. Substitution of glutamate for the first aspartate (EDYLD) decreased the Vmax by over 90-fold. The Km for IPP increased, whereas the Km for GPP remained the same in this D243E mutant. Substitution of glutamate for the third aspartate (DDYLE) did not result in altered enzyme kinetics in the D247E mutant. These results suggest that the first aspartate in the second domain is involved in the catalysis by FPP synthase.  相似文献   

10.
Zhang YW  Li XY  Koyama T 《Biochemistry》2000,39(41):12717-12722
Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.  相似文献   

11.
In a previous study, it was shown that the protein encoded by the gene B318L of African swine fever virus (ASFV) is a trans-prenyltransferase that catalyzes in vitro the condensation of farnesyl diphosphate and isopentenyl diphosphate to synthesize geranylgeranyl diphosphate and longer chain prenyl diphosphates (Alejo, A., Yá?ez, R. J., Rodríguez, J. M., Vi?uela, E., and Salas, M. L. (1997) J. Biol. Chem. 272, 9417-9423). To investigate the in vivo function of the viral enzyme, we have determined, in this work, its subcellular localization and activity in cell extracts. Two systems were used in these studies: cells infected with ASFV and cells infected with a recombinant pseudo-Sindbis virus carrying the complete B318L gene. In this latter system, the trans-prenyltransferase was found to colocalize with the endoplasmic reticulum marker protein-disulfide isomerase, whereas in cells infected with ASFV, the viral enzyme was present in cytoplasmic viral assembly sites, associated with precursor viral membranes derived from the endoplasmic reticulum. In addition, after subcellular fractionation, the viral enzyme partitioned into the membrane fraction. Extraction of membrane proteins with alkaline carbonate and Triton X-114 indicated that the ASFV enzyme behaved as an integral membrane protein. The membrane enzyme synthesized predominantly all-trans-geranylgeranyl diphosphate from farnesyl diphosphate and isopentenyl diphosphate. These results indicate that the viral B318L protein is a trans-geranylgeranyl-diphosphate synthase, being the only enzyme of this type that is known to have a membrane localization.  相似文献   

12.
13.
Geranylgeranyl diphosphate (GGPP) synthase catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to give (all-E)-GGPP. GGPP is one of the key precursors in the biosynthesis of biologically significant isoprenoid compounds. In order to examine possible participation of the GGPP synthase in the enzymatic prenyl chain elongation in natural rubber biosynthesis, we cloned, overexpressed and characterized the cDNA clone encoding GGPP synthase from cDNA libraries of leaf and latex of Hevea brasiliensis. The amino acid sequence of the clone contains all conserved regions of trans-prenyl chain elongating enzymes. This cDNA was expressed in Escherichia coli cells as Trx-His-tagged fusion protein, which showed a distinct GGPP synthase activity. The apparent K(m) values for isopentenyl-, farnesyl-, geranyl- and dimethylallyl diphosphates of the GGPP synthase purified with Ni(2+)-affinity column were 24.1, 6.8, 2.3, and 11.5 microM, respectively. The enzyme shows optimum activity at approximately 40 degrees C and pH 8.5. The mRNA expression of the GGPP synthase was detected in all tissues examined, showing higher in flower and leaf than petiole and latex, where a large quantity of natural rubber is produced. On the other hand, expression levels of the Hevea farnesyl diphosphate synthase were significant in latex as well as in flower.  相似文献   

14.
cis-Prenyltransferases catalyze the consecutive condensation of isopentenyl diphosphate (IPP) with allylic prenyl diphosphates, producing Z,E-mixed prenyl diphosphate. The Mycobacterium tuberculosis Z,E-farnesyl diphosphate synthase Rv1086 catalyzes the condensation of one molecule of IPP with geranyl diphosphate to yield Z,E-farnesyl diphosphate and is classified as a short-chain cis-prenyltransferase. To elucidate the chain-length determination mechanism of the short-chain cis-prenyltransferase, we introduced some substitutive mutations at the characteristic amino acid residues of Rv1086. Among the mutants constructed, L84A showed a dramatic change of catalytic function to synthesize longer prenyl chain products than that of wild type, indicating that Leu84 of Rv1086 plays an important role in product chain-length determination. Mutagenesis at the corresponding residue of a medium-chain cis-prenyltransferase, Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase also resulted in the production of different prenyl chain length from the intrinsic product, suggesting that this position also plays an important role in product chain-length determination for medium-chain cis-prenyltransferases.  相似文献   

15.
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to generate geranyl diphosphate, the essential precursor of monoterpene biosynthesis. Using geranylgeranyl diphosphate synthase from Taxus canadensis as a hybridization probe, four full length cDNA clones, sharing high sequence identity to each other (>69%) and to the Taxus geranylgeranyl diphosphate synthase (>66%), were isolated from a grand fir (Abies grandis) cDNA library. When expressed in Escherichia coli, three of the recombinant enzymes produced geranyl diphosphate and one produced geranylgeranyl diphosphate as the dominant product when supplied with isopentenyl diphosphate and dimethylallyl diphosphate as cosubstrates. One enzyme (AgGPPS2) was confirmed as a specific geranyl diphosphate synthase, in that it accepted only dimethylallyl diphosphate as the allylic cosubstrate and it produced exclusively geranyl diphosphate as product, with a k(cat) of 1.8s(-1). Gel filtration experiments performed on the recombinant geranyl diphosphate synthases, in which the plastidial targeting sequences had been deleted, revealed that these enzymes are homodimers similar to other short-chain prenyltransferases but different from the heterotetrameric geranyl diphosphate synthase of mint.  相似文献   

16.
We examined the reactivity of 3-alkyl group homologues of farnesyl diphosphate or isopentenyl diphosphate for medium-chain prenyl diphosphate synthases, hexaprenyl diphosphate- or heptaprenyl diphosphate synthase. But-3-enyl diphosphate, which lacks the methyl group at the 3-position of isopentenyl diphosphate, condensed only once with farnesyl diphosphate to give E-norgeranylgeranyl diphosphate by the action of either enzyme. However, norfarnesyl diphosphate was never accepted as an allylic substrate at all. 3-Ethylbut-3-enyl diphosphate also reacted with farnesyl diphosphate giving a mixture of (all-E)-3-ethyl-7,11,15-trimethylhexadeca-2,6,10,14-tetraenyl- and (all-E)-3,7-diethyl-11,15,19-trimethylicosa-2,6,10,14,18-pentaenyl diphosphates by hexaprenyl diphosphate synthase. On the other hand, heptaprenyl diphosphate synthase reaction of 3-ethylbut-3-enyl diphosphate with farnesyl diphosphate gave only (all-E)-3-ethyl-7,11,15-trimethylhexadeca-2,6,10,14-tetraenyl diphosphate.  相似文献   

17.
Y W Zhang  X Y Li  H Sugawara  T Koyama 《Biochemistry》1999,38(44):14638-14643
Heptaprenyl diphosphate synthase of Bacillus subtilis is composed of two dissociable heteromeric subunits, component I and component II. Component II has highly conserved regions typical of (E)-prenyl diphosphate synthases, but it shows no prenyltransferase activity alone unless it is combined with component I. Alignment of amino acid sequences for component I and the corresponding subunits of Bacillus stearothermophilus heptaprenyl diphosphate synthase and Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase shows three regions of high similarity. To elucidate the role of these regions of component I during catalysis, 13 of the conserved amino acid residues in these regions were selected for substitution by site-directed mutagenesis. Kinetic studies indicated that substitutions of Val-93 with Gly, Leu-94 with Ser, and Tyr-104 with Ser resulted in 3-10-fold increases of K(m) values for the allylic substrate and 5-15-fold decreases of V(max) values compared to those of the wild-type enzyme. The three mutated enzymes, V93G, L94S, and Y104S, showed little binding affinity to the allylic substrate in the membrane filter assay. Furthermore, product analyses showed that D97A yielded shorter chain prenyl diphosphates as the main product, while Y103S gave the final product with a C(40) prenyl chain length. These results suggest that some of the conserved residues in region B of component I are involved in the binding of allylic substrate as well as determining the chain length of the enzymatic reaction product.  相似文献   

18.
Isoprenyl diphosphate synthases (IDSs) catalyze some of the most basic steps in terpene biosynthesis by producing the prenyl diphosphate precursors of each of the various terpenoid classes. Most plants investigated have distinct enzymes that produce the short‐chain all‐trans (E) prenyl diphosphates geranyl diphosphate (GDP, C10), farnesyl diphosphate (FDP, C15) or geranylgeranyl diphosphate (GGDP, C20). In the genome of Arabidopsis thaliana, 15 trans‐product‐forming IDSs are present. Ten of these have recently been shown to produce GGDP by genetic complementation of a carotenoid pathway engineered into Escherichia coli. When verifying the product pattern of IDSs producing GGDP by a new LC‐MS/MS procedure, we found that five of these IDSs produce geranylfarnesyl diphosphate (GFDP, C25) instead of GGDP as their major product in enzyme assays performed in vitro. Over‐expression of one of the GFDP synthases in A. thaliana confirmed the production of GFDP in vivo. Enzyme assays with A. thaliana protein extracts from roots but not other organs showed formation of GFDP. Furthermore, GFDP itself was detected in root extracts. Subcellular localization studies in leaves indicated that four of the GFDP synthases were targeted to the plastoglobules of the chloroplast and one was targeted to the mitochondria. Sequence comparison and mutational studies showed that the size of the R group of the 5th amino acid residue N‐terminal to the first aspartate‐rich motif is responsible for C25 versus C20 product formation, with smaller R groups (Ala and Ser) resulting in GGDP (C20) as a product and a larger R group (Met) resulting in GFDP (C25).  相似文献   

19.
20.
Protein farnesyl transferase (PFTase) catalyzes the reaction between farnesyl diphosphate and a protein substrate to form a thioether-linked prenylated protein. The fact that many prenylated proteins are involved in signaling processes has generated considerable interest in protein prenyl transferases as possible anticancer targets. While considerable progress has been made in understanding how prenyl transferases distinguish between related target proteins, the rules for isoprenoid discrimination by these enzymes are less well understood. To clarify how PFTase discriminates between FPP and larger prenyl diphosphates, we have examined the interactions between the enzyme and several isoprenoid analogues, GGPP, and the farnesylated peptide product using a combination of biochemical and structural methods. Two photoactive isoprenoid analogues were shown to inhibit yeast PFTase with K(I) values as low as 45 nM. Crystallographic analysis of one of these analogues bound to PFTase reveals that the diphosphate moiety and the two isoprene units bind in the same positions occupied by the corresponding atoms in FPP when bound to PFTase. However, the benzophenone group protrudes into the acceptor protein binding site and prevents the binding of the second (protein) substrate. Crystallographic analysis of geranylgeranyl diphosphate bound to PFTase shows that the terminal two isoprene units and diphosphate group of the molecule map to the corresponding atoms in FPP; however, the first and second isoprene units bulge away from the acceptor protein binding site. Comparison of the GGPP binding mode with the binding of the farnesylated peptide product suggests that the bulkier isoprenoid cannot rearrange to convert to product without unfavorable steric interactions with the acceptor protein. Taken together, these data do not support the "molecular ruler hypotheses". Instead, we propose a "second site exclusion model" in which PFTase binds larger isoprenoids in a fashion that prevents the subsequent productive binding of the acceptor protein or its conversion to product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号