首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
本文采用OH-PLIF探测系统对在McKenna平面火焰炉上产生CH_4/H_2/CO_2/O_2细胞状火焰进行了定量测量和分析。研究发现,平面火焰在稀燃极限附近会出现胞状结构,细胞数量随当量比/掺氢比的增加而增加,主要是由火焰自身不稳定性导致。同时我们通过OH-PLIF图片定量提取并定义了相关参数以表征平面火焰的不稳定程度,并发现随着火焰悬浮距离的减少火焰趋向于稳定,火焰对炉面的热损失有抑制不稳性发生的作用。通过线性理论分析,我们发现RS模型能够很好预测火焰稳定性随当量比变化趋势,但无法预测随掺氢比的变化趋势。在掺氢状态下,火焰面离炉面更近,炉面对火焰不稳定性的抑制作用不可忽视,故理论模型对掺氢影响的预测失效。  相似文献   

2.
运用了定容燃烧弹-纹影系统球形发展火焰的研究方法,用体积比H2:CO=2:1的混合气来模拟甲醇裂解气,用N_2和CO_2作为稀释气,在初始温度为343 K、初始压力为0.3 MPa的条件下进行了稀释气-天然气-甲醇裂解气-空气预混燃烧试验,研究了不同当量比(0.8~1.4)下不同稀释气种类(N2和C02)及不同稀释气添加比例(0.05、0.1、0.15)对天然气-甲醇裂解气-空气(其中甲醇裂解气体积占比0.4、天然气体积占比0.6)层流燃烧速度、马克斯坦长度及胞状结构等燃烧特性的影响.并且在不添加稀释气的条件下,进行了同样初始温度和压力下的天然气(1/0.6/0.2)-甲醇裂解气(0/0.4/0.8)-空气预混层流燃烧的对比试验.结果表明:掺甲酵裂解气会增加混合气层流燃烧速率,促进胞状结构的产生;添加稀释气会降低层流燃烧速率;CO_2对流体动力学不稳定性的抑制作用以及对热扩散不稳定性的促进作用强于N2.在此条件下,热扩散不稳定性是影响火焰不稳定性的主要因素.  相似文献   

3.
在一台200MW锅炉上开展了五种不同煤/煤气掺配比例工况的试验研究,采用便携式可视化系统检测并分析了掺烧不同比例与不同发热量的煤气对炉膛温度、火焰黑度、主蒸汽参数与锅炉效率的影响。结果表明:(1)炉膛温度随掺烧高炉煤气量增加而下降,随焦炉煤气量增加而增加;(2)燃烧器区域的火焰黑度随高炉煤气量增加而减小,随焦炉煤气量增加而增加;(3)锅炉热效率随高炉煤气量增大而下降,随焦炉煤气量增大而上升;(4)在180 MW负荷时,综合考虑锅炉安全性和经济性,掺烧20%的高炉煤气和10%的焦炉煤气是较佳的煤气掺烧比例。  相似文献   

4.
采用叶轮型旋流燃烧器,选取氢气作为燃料添加剂,研究了掺氢比对氨气旋流火焰稳定性的影响,分析了不同旋流数、叶片数、当量比以及预混气总流量条件下,旋流火焰形态变化。测定并分析了不同参数对旋流火焰燃烧极限范围的影响。结果表明,随掺氢比的增大,火焰逐渐由“V”型转化为稳定的“M”型,燃烧反应愈发充分;高旋流数(1.27)或低叶片数(6片)相比低旋流数(0.42)或高叶片数(8片)更有利于旋流火焰的稳定和燃烧的充分进行;相比富燃,贫燃有利于形成稳定的旋流火焰;预混气总流量较大时,火焰高度较高.对于燃烧极限,掺氢比越高,极限范围越大;总流量的变化对贫燃极限影响较小,对富燃极限影响较大;高旋流数(1.27)条件下,燃烧极限范围较大。  相似文献   

5.
本文基于层流预混火焰燃烧器台架,研究不同掺氢比及不同当量比对乙炔预混火焰中碳烟生成的影响。结果表明,掺氢之后,火焰温度略有降低,且掺氢比越大,温度降低越明显;然而随着当量比降低,火焰温度逐渐升高。掺氢及降低当量比对碳烟生成有明显的抑制作用,掺氢比越高及当量比越小,碳烟体积分数降低越明显;通过对比相同乙炔流量掺氢与不掺氢两种工况下的碳烟体积分数发现,掺氢情况下的碳烟体积分数较小;因此,对于乙炔掺氢预混火焰,其碳烟生成的减少是乙炔含量的减少及氢气的稀释和化学影响的共同作用。  相似文献   

6.
利用CHEMKIN软件,对掺氢比例为10%、15%、20%和25%的天然气混合燃料对HCCI内燃机燃烧特性的影响进行模拟,并对其进行数据分析。结果表明:(1)氢气比例不同,可对天然气的燃烧速率产生影响;比例为10%时,对天然气的燃烧过程影响不明显,却显著提前了天然气燃烧时的着火时刻,但随着掺入氢气比例的增加,着火时刻提前的现象逐渐推迟。(2)随着掺氢比例的逐渐增加,缸内压力、缸内温度、中间产物CO的排放量的峰值均逐渐减小;累积气相反应放热量逐渐减小;掺氢热效率和气相反应净产热量在氢气的掺入比为10%~15%之间时达到峰值。(3)在尾气排放中,随着掺氢比例的增加,CO_2生成时刻提前,生成量未改变;NO含量的峰值和排放量随着掺氢的比例增加而增加。  相似文献   

7.
氢是非常有潜力的清洁能源载体,富氢燃料燃烧是降低碳排放的可行方式.燃料掺氢会使火焰结构发生明显改变,进而会影响燃烧过程的排放特性与稳定性.然而,氢气掺混对旋流钝体火焰结构影响机理还不甚明确,高掺氢比下火焰结构特征的研究尚且不足.本文基于预混CH4/H2旋流钝体火焰,对宽广掺氢比范围内(0%~80%)的火焰多场信息进行了...  相似文献   

8.
本文分析了刀口纹影技术显示高速流逝现象如火焰、燃烧、击波和流动等的局限性,并根据色度学颜色混合定律,设计了三色彩环滤波片代替典型纹影系统中的刀口,和用直径1毫米的小孔代替狭缝,获得了扰动场的彩色纹影图象。根据一次摄影得到的纹影象的色度变化可得到扰动场引起的光线偏折量,由此可对高速扰动场的物理特性作出简单可靠的定性评价和一定条件下可作出定量评价。文章通过实验,用直接摄影、刀口纹影、彩条彩色纹影和彩环彩色纹影四种方法,分别对代表稳定扰动场的透明不均匀材料和酒精灯火焰进行拍摄,并作了比较分析,得出彩环彩色纹影可在二维平面内的全向指示偏折量。  相似文献   

9.
利用光热检测技术测量了钛酸钡材料的导热性能,得到了不同成型压力、烧结温度以及不同 掺杂量下的钛酸钡材料的热扩散率.研究了钽掺杂对钛酸钡材料导热性能的影响,发现了钽 元素掺杂量小于1.5mol%时,钛酸钡材料的热扩散率随掺杂量的增加而增大,当钽元素掺杂 量大于1.5mol%时,热扩散率随掺杂量的增加而减少.对钛酸钡材料的导热性能做了进一步的 分析. 关键词: 光热检测 钛酸钡 导热性能 钽掺杂  相似文献   

10.
 利用路径积分蒙特卡罗方法,研究了压力和温度变化对固氘掺锂体系的影响。结果表明,在高压条件下(0.9~2.4 GPa),锂原子掺入固体氘后,要占据五个氘分子空位形成稳定结构。温度变化不能改变这一五空位占据。固氘掺锂体系锂原子吸收谱随压力和温度的变化趋势类似于固氢掺锂体系锂原子吸收谱随压力和温度变化的趋势。但在某一固定压力和温度点,这两种吸收谱却由于氘分子和氢分子零点振动的不同有着明显的差异。随着温度或压力的增加,这两种吸收谱间的差异越来越小。  相似文献   

11.
使用YAG脉冲激光烧蚀固态POM聚合物和掺碳质量分数为5%的液态甘油混合物,形成羽流场.分别在相机镜头前添加滤光片以及在纹影系统中设置不同的刀口,观察对羽流场像的影响.实验结果表明:滤光片和暗场纹影均能够提高羽流纹影图像的显示效果.  相似文献   

12.
本文利用直接数值模拟方法对均质压燃(HCCI, Homogeneous Charge Compression Ignition)工况下氨氢混合物的着火和燃烧特性进行了研究。结果表明,着火首先从局部孤立区域处发生,随后发展到整个计算区域;最高燃烧温度和热释率随着掺氢比的增加而增加;通过与零维计算结果对比,发现湍流和热分层使得氨氢混合物着火提前。利用直接数值模拟数据计算了反应锋面的位移速度,并据此分析了自着火和火焰传播这两种燃烧模式。发现在低掺氢比的情况下,燃烧模式以自着火为主;而在高掺氢比的情况下,燃烧模式以火焰传播为主。  相似文献   

13.
激光诱导荧光聚焦纹影系统及超声速燃烧流场应用   总被引:1,自引:0,他引:1       下载免费PDF全文
纹影是一种常用的流动显示技术,广泛应用于可压缩流动显示及超声速燃烧流场实验.然而,在变Mach数超声速燃烧实验中,燃烧室总温随来流Mach数变化.受准稳态/非定常温度变化影响,光学玻璃窗口的折射率发生显著改变,影响基于密度梯度的纹影成像质量.同时,普通纹影为光程体积沿程积分,难以同二维燃烧场成像信息进行直接比较以开展燃烧与流动耦合研究.聚焦纹影技术可抑制燃烧室内高温引起的玻璃窗口折射率变化,并实现毫米级的急剧聚焦深度,获得二维流场结构,同时配合纳秒级脉宽Nd:YAG激光光源可冻结高超声速流场.在传统聚焦纹影系统基础上发展了激光诱导荧光聚焦纹影系统并应用于变Mach数超声速燃烧实验,创新点在于使用激光诱导荧光染料,以荧光作为光源消除原本激光光源中的相干噪声,同时发展了边缘增强图像处理方法.实验结果表明激光诱导荧光聚焦纹影系统及边缘增强图像处理方法能够有效消除激光光源相干噪声,捕捉二维超声速燃烧流场结构.   相似文献   

14.
掺氢天然气在稀释气体作用下的熄灭特性研究对实际燃烧设备的设计和优化具有重要的指导意义。本文利用对冲火焰法测量了掺氢天然气层流火焰在N2和CO2作用下的熄灭拉伸率,并采用数值模拟耦合详细化学反应机理对N2,CO2和He的稀释剂效应展开研究。结果表明,Li、GRI Mech 3.0和FFCM-1机理均能定性反映燃料熄灭拉伸率随当量比的变化规律,且FFCM-1机理综合预测精度最高。实验和模拟发现,不同稀释剂气体对掺氢天然气熄灭拉伸率降低幅度满足:He22。进一步研究发现,CO2由于热容大,在反应体系中会降低火焰温度,同时增强了链终止反应强度,通过热效应和化学效应两方面对火焰熄灭特性起作用。He则能显著改变燃料混合物的平均摩尔质量,从而改变体系中重要反应物和自由基的扩散特性,从扩散效应方面影响火焰的熄灭特性。  相似文献   

15.
采用数值计算与实验相结合的方法研究了掺氢甲烷射流扩散火焰的燃烧特性。结果表明,热量的传递主要是通过热气流对流进行,上游高温气流快速沿轴向流动,径向热量传递较弱;而下游轴向速度降低,热量径向传递增强。喷嘴附近伴流气边界较为稳定,而下游在涡旋作用下出现显著的扰动。射流速度对火焰特性有较大影响,增大射流速度后,火焰高度、辐射强度以及CO、NO、CO2、H2O浓度皆显著增加,且辐射强度峰值向下游移动。掺氢量对火焰特性也有重要影响,随着H2含量增加,燃料向下游传播距离缩短,CO、NO、CO2浓度降低,H2O浓度增加。  相似文献   

16.
考虑应变,在有效质量、有限高势垒近似下,变分研究了纤锌矿GaN/AlxGa1 -xN柱形量子点中类氢施主杂质态结合能随流体静压力、杂质位置及量子点结构参数(量子点高度、半径、Al含量)的变化关系.结果表明,类氢施主杂质态结合能随流体静压力增大而增大,且在量子点尺寸较小时,流体静压力对杂质态结合能的影响更为显著.受流体静压力的影响,杂质态结合能随量子点高度、半径的增加而单调减少,且变化趋势加剧;随Al含量增加而增大的趋势变缓.无论是否施加流体静压力,随着类氢施主杂质从量子点左界面沿材料生长方向移至右界面,杂质态结合能在量子点的右半部分存在一极大值.流体静压力使得极大值点向量子点中心偏移.  相似文献   

17.
利用纹影法,在定容燃烧弹中研究了较高当量比和不同初始压力下氢气空气预混合气的燃烧特性,分析了两参数对其燃烧特性的影响。试验结果表明,本实验条件下的氢气空气预混合物燃烧过程中,主火焰两侧出现挤流火焰,且挤流火焰的传播明显快于主火焰;根据出现挤流火焰与否、两侧挤流火焰相遇与否、实验时的热力参数、燃料浓度等条件,燃烧过程可分为四个阶段;在本文的实验条件下随着当量比增加,挤流火焰燃烧速度加快,其倾向于自燃时的多点燃烧;随着初始压力降低,挤流火焰逐渐出现在主火焰层流燃烧阶段。  相似文献   

18.
在定容燃烧弹中利用高速纹影摄像法和球形扩展火焰研究了常压下不同燃空当量比和初始温度时2,5-二甲基呋喃-空气混合气的层流火焰特性,获得了拉伸和无拉伸火焰传播速率,无拉伸层流燃烧速率和马克斯坦长度。研究结果表明:2,5-二甲基呋喃-空气混合气的无拉伸火焰传播速率和无拉伸层流燃烧速率在燃空当量比1.2附近达到最大值,它们都随着初始温度的增加而增加。随着初始温度的增加,无拉伸火焰传播速率的峰值位置向浓混合气(燃空当量比增大)的方向移动。随着燃空当量比的减小和初始温度的增加,马克斯坦长度增加,表明火焰前峰面的稳定性增强。基于实验结果数据,拟合得到了2,5-二甲基呋喃-空气混合气的无拉伸层流燃烧速率的关系式。  相似文献   

19.
考虑应变,在有效质量、有限高势垒近似下,变分研究了纤锌矿GaN/AlxGa1-xN柱形量子点中类氢施主杂质态结合能随流体静压力、杂质位置及量子点结构参数(量子点高度、半径、Al含量)的变化关系.结果表明,类氢施主杂质态结合能随流体静压力增大而增大,且在量子点尺寸较小时,流体静压力对杂质态结合能的影响更为显著.受流体静压力的影响,杂质态结合能随量子点高度、半径的增加而单调减少,且变化趋势加剧;随A1含量增加而增大的趋势变缓.无论是否施加流体静压力,随着类氢施主杂质从量子点左界面沿材料生长方向移至右界面,杂质态结合能在量子点的右半部分存在一极大值.流体静压力使得极大值点向量子点中心偏移.  相似文献   

20.
丙烷-氢气-空气预混层流燃烧特性研究   总被引:1,自引:0,他引:1  
利用高速纹影摄像法和球型发展火焰研究了常温常压下丙烷-氢气-空气预混层流燃烧特性,获得了不同氢气体积分数和当量比下混合气的层流燃烧速率、Markstein数、Zeldovich数和Lewis数.结果表明:随着氢气比例的提高,层流燃烧速率增加,火焰厚度降低;当氢气体积分数小于60%时,随着当量比的增加,Markstein数降低,当氢气体积分数大于60%时,随着当量比的增加,Markstein数增加.当量比小于1.2时,随着氢气比例增加,Markstein数降低.当量比大于1.2时,随着氢气比例增加,Markstein数增加.随着氢气比例的增加,Zeldovich数降低,全局Lewis数降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号