首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在一低速风洞中,采用局部模拟实验方法,针对两种不同形状的针形管,在顺排方式下进行了横掠管簇传热和阻力特性试验研究。实验表明从第5排起换热趋于稳定,试验中得出了针形管束的平均努谢尔特数Nu和阻力系数f的计算关联式,同时给出了各排管换热的修正系数CN,最后对两种针形管的性能作了分析比较。试验结果为以针形管为换热元件的热能利用装置提供了设计计算依据。图8参3  相似文献   

2.
本研究对比分析了三维内肋管及三维变形管的结构特点和强化传热机理,在相同工况下,揭示了光滑圆管、三维内肋管及三维变形管用于管式空气预热器时的传热性能和流动阻力性能,三维内肋管和三维变形管传热性能均优于光滑圆管,三维变形管管内传热系数和流动阻力系数随短长轴B/A的减小而增大,三维内肋管可增加每米肋数、肋宽和肋高以强化传热效果,但流体流动阻力也将增加,低Re下,三维变形管管内综合传热性能优于三维内肋管,三维变形管管外自支撑而防止管束振动的特点可以实现在管内外的冷热流体纯逆流动,提出一种传热温差高的逆流三维变空间管式空气预热器,在相同工况条件下,空气预热器重量减轻,体积减小约65%,节省大量的生产和运输成本以及安装空间,三维变形管空气预热器在烟气余热利用中具有推广应用价值。  相似文献   

3.
对内肋管内部流体的湍流换热过程进行了数值模拟,讨论了肋高和肋的轴向夹角对换热的影响。相比于普通圆管,内肋圆管内的传热性能明显得到提高。无量纲肋高度和角度分别为0.8°和40°时传热效果最佳,而在0.1°和40°时换热与阻力的比值(Performance Evaluation Criteria,PEC)最大,综合换热性能最佳,可用于强化地源热泵地埋管换热。此外,本研究从火积耗散与传热效率的角度分析了内肋强化传热机理,得到管壁冷却管内流体的火积传递效率计算式,为内肋管强化换热的深入分析提供了依据。  相似文献   

4.
针形管在余热锅炉中的应用   总被引:1,自引:0,他引:1  
针形管是一种新型的强化传热元件,作者提出了其管换热系数的理论计算公式,并将该元件应用于余热锅炉的设计研制中。  相似文献   

5.
本文采用数值模拟的方法研究了一种新型组合肋通道的流动与传热特性,主要对比了不同肋型通道的传热性能和阻力性能,考察了雷诺数、肋间距和肋高对通道壁面特征数的影响规律.结果 表明与矩形肋、半圆肋通道相比,组合肋通道的综合传热性能最好,且阻力损失小.  相似文献   

6.
根据纵向涡强化传热技术提出了新型的强化换热管——锥形内肋管,运用数值模拟方法,研究了新型强化换热管结构参数锥底宽度a、导程P、肋深e和Re数对Nu、沿程阻力系数f及传热综合因子η的影响。结果表明:换热管内壁面边缘处产生了较多的微小涡流,有效破坏了流动边界层,强化了传热。在充分湍流的条件下,流体Re越小、e越小,其综合传热性能越强。当Re<15 000时,a对η的影响要大于P;在过渡点后, P对η影响较大。通过综合传热性能分析,给出了适合不同Re区间的锥形内肋优化参数。  相似文献   

7.
为了探究三维肋管肋结构参数对管外流动和传热特性的影响,采用控制变量法通过实验研究了热空气横掠三维肋管时,管外努塞尔数Nu与欧拉数Eu随肋结构参数的变化规律。与相同实验工况下的光管对比,分析了不同肋高、肋宽以及轴向间距对三维肋管综合传热性能的影响。结果表明:在一定流速范围内,Nu随着肋高和肋宽的增加而增加,随着轴向间距的增加而减小;相同换热条件下,三维肋管综合性能评价指标(Performance Evaluation Criterion,PEC)优于光管;且换热管的PEC随着肋高和肋宽的增加而增加,随着轴向间距的增加反而减小。  相似文献   

8.
对H型翅片椭圆管束的管外侧传热与阻力特性进行了模化实验研究,得到了H型翅片椭圆管束的管外侧传热与阻力特性变化规律,分析了横向管间距s_1与纵向管间距s_2对H型翅片椭圆管束传热与阻力特性的影响。研究表明:在研究范围内,随着s_1的增大,管外侧传热性能变差、阻力减小;随着s_2的增大,管外侧传热性能明显变差,阻力明显减小;且纵向管间距s_2对传热与阻力性能的影响比横向管间距s_1更明显。  相似文献   

9.
利用萘升华技术,在Re=2000-22000的范围内对有顶端间隙的非标准错列肋片簇的传热(质)及阻力特性进行了实验研究,给出了各个肋片位错情况下,Sherwood数及阻力系数f随Reynolds数变化的拟合关系式,并综合分析了肋片位错对非标准错列肋片簇的传质(换热)及阻力性能的影响,所得结论可供工程设计时参考。  相似文献   

10.
金铁石  付崇彬 《节能技术》2012,30(3):212-215,219
本文基于k-ε模型,针对波节管高效换热元件中纵向逆流换热的传热特性和阻力特性进行三维数值模拟研究。传热工质在管程和壳程分别为氦气和氮气,管束采用三角形布置。本文首先分析了不同波距及雷诺数下对换热量影响。为了体现高效换热元件比光管的优越性,随后分析了不同波距及雷诺数对Q/Q0(波节管与光管的换热量比)与Δp/Δp0(波节管与光管的压力降比)。最后得出结论,波距L的增加使高效换热元件的传热性能和阻力性能有所降低,但提高了其综合传热性能。雷诺数的增加会大幅提高换热量,但同时综合传热效率也大幅降低。  相似文献   

11.
ExperimentalResearchonHeatTransferandPressureDropofTwoConfigurationsofPinFinned-TubesinIn-lineArrayShouGuangYao;DeShuZhu(Depa...  相似文献   

12.
Pressure drop and heat transfer characteristics of air in three annular tubes with different internal longitudinal fins were investigated experimentally at uniform wall heat flux. The tested tubes have a double‐pipe structure with the inner blocked tube as an insertion. Three different kinds of fins, plain rectangle fin, plain rectangle fin with periodical ridges and wave‐like fin, were located peripherally in the annulus. The friction factor and Nusselt number can be corrected by a power‐law correction in the Reynolds number range tested. It was found that the tube with periodical ridges on the plain fin or with wave‐like fin could augment heat transfer; however, the pressure drop was increased simultaneously. In order to evaluate the comprehensive heat transfer characteristics of the tested tubes, two criteria for evaluating the comprehensive thermal performance of tested tubes were adopted. They are: 1) evaluating the comprehensive heat transfer performance under three conditions: identical mass flow, identical pumping power, and identical pressure drop; 2) the second law of thermodynamics, i.e., the entropy generation. According to the two different evaluating methods, it was found that the tube with wave‐like fins provided the most excellent comprehensive heat transfer performance among the three tubes, especially when it was used under higher Reynolds number conditions. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(1): 29–40, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20186  相似文献   

13.
A parametric study of thermoeconomic performance over four micro pin fin heat sinks of different spacing and shapes was conducted. Unit cost per product exergy, relative cost difference, and exergo‐economic factor were utilized to evaluate the thermoeconomic performance. The effect of working fluid on the thermoeconomic performance was also investigated using R‐123 and water as working fluids. Unit costs per product exergy were obtained to evaluate the product costs (total exergy change between exit and inlet streams) in micro pin fin heat sinks at fixed mass flow rate and fixed pressure drop. The results of the thermoeconomic analysis were compared with the results of a past exergy performance study by the author. In the light of raw experimental data acquired from the past studies of the author, important differences between the results of exergy and exergo‐economic performances were observed. It was found that the unit cost of exergy change decreased as electrical power increased and the relative cost difference approached to unity at high electrical powers (greater than 20 W). Moreover, high exergo‐economic factor values (more than 0.5) were obtained at low electrical powers while exergo‐economic factors had a small value at high electrical powers. When looking at the effect of the working fluid, higher cost per Watts of the products (up to the double of R‐123) was obtained with water compared with R‐123 at both fixed mass flow rate and pressure drop. No significant effect of pin fin spacing on the unit cost of exergy change was observed at fixed mass flow rate, while higher unit costs (up to 102%) were recorded at fixed pressure drop for scarcely packed pin fin heat sinks. Finally, the unit cost of exergy change was found to be independent of pin fin shape at fixed mass flow rate, whereas at fixed pressure drop, the hydrofoil‐based pin fin heat sink had higher unit costs (up to 1.8 times as much) when compared with the unit costs of pin fin heat sinks having flow separation promoting pin fins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Performance characteristics of the Hybrid Closed Circuit Cooling Tower (HCCCT) have been tested experimentally. Bare-type copper tubes and fin tubes were used in staggered arrangement at the heat exchanger of the HCCCT and the cooling capacity and pressure drop have been studied from various perspectives. The relevant temperatures and velocities were selected based on the typical East Asian meteorological constraints for the year round operation of the HCCCT. Performance characteristics were compared and found that for the fin tubes, cooling capacities were about 22% and 260% higher than those of the bare tubes in wet and dry modes, respectively. The pressure drop for the fin tubes was nearly two times higher than that of the bare tubes in both modes. The experimental results show considerable enhancement of cooling capacity.  相似文献   

15.
Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing to air-cooling applications. Empirical equations to predict heat transfer on the endwall were developed by obtaining experimental data on the copper base plate with acrylic pins. A new model for predicting pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow based on mass, momentum, and energy conservation within the two control volumes is proposed. The first control volume in the model is located within the finned area, and the second is located in the gap between the tip of the pins and the flow channel. This model combines two conditions according to the boundary-layer thickness. A comparison between experimental and calculated results revealed that dimensionless pressure drops and the Nusselt number could be predicted within 30% error for the former and 50% error for the latter.  相似文献   

16.
This study presents the thermal and fluid flow characteristics of five heat sinks that have been fabricated by a rapid manufacturing technique known as Selective Laser Melting. The five heat sinks consist of two conventional designs, the cylindrical pin and rectangular fin array, for comparison purposes, and three novel heat sinks: a staggered elliptical array; a lattice; and a rectangular fin array with rounded corners. The experimental results for the rectangular fin were compared with data from the literature and were found to be consistent. The rectangular fin with rounded corners proved able to transfer the largest amount of heat whilst improving upon the pressure drop performance of the standard rectangular fin array. Although the lattice arrangement made use of the fabrication process’ ability to manufacture heat sinks with high surface area to volume ratios, its performance was limited by the lack of interaction between the cooling air and structure. In terms of both heat transfer performance and pressure drop, the staggered elliptical array, which cannot be manufactured by conventional techniques, outperformed the other heat sinks.  相似文献   

17.
肖洪 《节能技术》2006,24(3):265-267
本文对椭圆管与扁管管板式换热器的充分发展的周期性层流流动与换热特性进行了数值计算分析,给出了在400相似文献   

18.
Generally, internal micro‐fin tubes are used for increasing the life and performance of electronic devices. The micro‐fins enhance the heat transfer rate by increasing the surface area with an increase of the pressure drop. In this study, heat transfer and pressure drop are analyzed by varying Reynolds number with the increase in the number of fins in tubes. Heat transfer and pressure drop, together with turbulence kinetic energy of micro‐fin tubes (helical and straight) and a smooth tube, have been evaluated for different Reynolds numbers (60 000, 40 000, 20 000, and 2000) at a constant temperature of 350 K, which clearly establishes laminar to turbulent flow. It is observed that the helical micro‐fin tube has a better result compared with the straight micro‐fin tube and smooth tube at Reynolds numbers 60 000, 40 000, and 20 000 at velocity 2, 1, and 0.5 m/s, respectively. This study is an attempt to establish a comparison of different micro‐fin geometries with varying Reynolds numbers, concluding that a high Reynolds number is suitable for the same.  相似文献   

19.
Air-side heat transfer and friction characteristics of nine kinds of fin-and-tube heat exchangers, with a large number of tube rows (6, 9, and 12, respectively) and large diameter of tubes (18 mm), are experimentally investigated. The test samples consist of three types of fin configurations: plain fin, slit fin, and fin with delta-wing longitudinal vortex generators. The working fluid in the tube is steam. Results show that when the number of tube is larger than 6, the heat transfer and friction performance for three kinds of fins is independent of the number of tube rows, and slit fin provides higher heat transfer and pressure drop than the other two fins. The heat transfer and friction factor correlations for all the heat exchangers were acquired with Reynolds numbers ranging from 4000 to 10000. The air-side performance of heat exchangers with plain fin, slit fin, and longitudinal vortex-generator fin were evaluated under three sets of criteria, and the results showed that the heat exchanger with slit fin has better performance than that with vortex-generator fin, especially at high Reynolds numbers.  相似文献   

20.
New experimental data are reported for condensation of R-113 at near atmospheric pressure and low velocity on five three-dimensional pin-fin tubes. The only geometric parameters varied were circumferential spacing and thickness, since these have been shown to have a strong effect on condensate retention on pin-fin tubes. Heat transfer enhancement was found to be strongly dependent on the active-area enhancement, i.e., on the parts of the tube and pin surface not covered by condensate retained by surface tension. For all the tubes, vapor-side heat transfer enhancements were found to be approximately 2.5 times the corresponding active-area enhancements, and this finding was in line with earlier data for R-113. An increase in the vapor-side heat transfer enhancement is noticed with the decreasing values of pin spacing. The best performing pin-fin tube gave a heat transfer enhancement about 14% higher than the “equivalent” two-dimensional integral-fin tube (i.e., with the same fin root diameter, longitudinal fin spacing, and thickness and fin height).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号