首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although native beta(2)-microglobulin (beta2-m), the light chain of the major histocompatibility complex class I antigen, assumes an immunoglobulin domain fold, it is also found as a major component of dialysis-related amyloid fibrils. In the amyloid fibrils, the conformation of beta2-m is considered to be largely different from that of the native state, and a monomeric denatured form is likely to be a precursor to the amyloid fibril. To obtain insight into the conformational dynamics of beta2-m leading to the formation of amyloid fibrils, we studied the reduction and reoxidation of the disulfide bond by reduced and oxidized dithiothreitol, respectively, and the effects on the reduction of the chaperonin GroEL, a model protein that might destabilize the native state of beta2-m. We show that beta2-m occasionally unfolds into a denatured form even under physiological conditions and that this transition is promoted upon interaction with GroEL. The results imply that in vivo interactions of beta2-m with other proteins or membrane components could destabilize its native structure, thus stabilizing the amyloid precursor.  相似文献   

2.
Actin, an abundant cytosolic protein in eukaryotic cells, is dependent on the interaction with the chaperonin tail-less complex polypeptide 1 ring complex (TRiC) to fold to the native state. The prokaryotic chaperonin GroEL also binds non-native beta-actin, but is unable to guide beta-actin toward the native state. In this study we identify conformational rearrangements in beta-actin, by observing similarities and differences in the action of the two chaperonins. A cooperative collapse of beta-actin from the denatured state to an aggregation-prone intermediate is observed, and insoluble aggregates are formed in the absence of chaperonin. In the presence of GroEL, however, >90% of the aggregation-prone actin intermediate is kept in solution, which shows that the binding of non-native actin to GroEL is effective. The action of GroEL on bound flourescein-labeled beta-actin was characterized, and the structural rearrangement was compared to the case of the beta-actin-TRiC complex, employing the homo fluorescence resonance energy transfer methodology previously used [Villebeck, L., Persson, M., Luan, S.-L., Hammarstr?m, P., Lindgren, M., and Jonsson, B.-H. (2007) Biochemistry 46 (17), 5083-93]. The results suggest that the actin structure is rearranged by a "binding-induced expansion" mechanism in both TRiC and GroEL, but that binding to TRiC, in addition, causes a large and specific separation of two subdomains in the beta-actin molecule, leading to a distinct expansion of its ATP-binding cleft. Moreover, the binding of ATP and GroES has less effect on the GroEL-bound beta-actin molecule than the ATP binding to TRiC, where it leads to a major compaction of the beta-actin molecule. It can be concluded that the specific and directed rearrangement of the beta-actin structure, seen in the natural beta-actin-TRiC system, is vital for guiding beta-actin to the native state.  相似文献   

3.
With decreasing temperature the reactivation yield of denatured D-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) upon dilution increases but the reactivation rate decreases. Neither reactivation nor aggregation during refolding can be detected at 4 degrees C in 48 h, and at 3 degrees C even in 6 days. However, the reactivation takes place once the temperature is raised with little decrease of the yield after incubation for 6 days at 3 degrees C. A cold folding intermediate forms in a burst phase of refolding at 4 degrees C as shown by a fast change of the intrinsic fluorescence followed by further conformational adjustment to a stable state in about 1 h. The stable folding intermediate has been characterized to be a dimer of partially folded GAPDH subunit with secondary structure between that of the native and denatured enzymes, a hydrophobic cluster not found in either the native or the denatured state, and an active site similar to but different from that of the native state. Chaperonin 60 (GroEL) binds with all intermediates formed at 4 degrees C, but the intermediates formed at the early folding stage reactivate with higher yield than those formed after conformational adjustment when dissociated from GroEL in the presence of ATP and further folded and assembled into the native tetramer.  相似文献   

4.
The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.  相似文献   

5.
The objective of this study was to investigate how a conformational change in lipoprotein lipase (LPL) affects its molecular functions. Monoclonal antibodies (MAbs) were raised against purified bovine milk lipoprotein lipase. MAb 5D2 bound to human and bovine LPL both before and after denaturation of LPL. MAb 5F9 also recognized LPL from both species, but only after denaturation of the antigen, suggesting that a conformational change led to exposure of a previously hidden epitope. The MAbs were used in two sandwich enzyme-linked immunosorbent assays (ELISAs). One ELISA used the same MAb (5D2) to coat the plate and detect the bound antigen. This ELISA thus required the same epitope to be present in duplicate for detection (as would be the case with a dimeric antigen). The second ELISA used MAb 5F9 to coat the plate and MAb 5D2 to detect the antigen. This ELISA detected LPL only after it had been denatured. By measuring the same sample before and after denaturation with guanidine hydrochloride (GuHCl) in the 5F9 ELISA, and subtracting one from the other, a measure of native LPL was obtained. In inactivation experiments using human LPL, activity and the measure of LPL mass obtained in the 5D2 ELISA decreased and were related inversely to the measured mass obtained in the 5F9 ELISA which increased, indicating that loss of activity is closely linked to dimer dissociation and loss of native conformation. The effect of conformation and dimeric structure on LPL-heparin interaction was studied by heparin-Sepharose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The interaction of GroEL with different denatured forms of glyceraldehyde-3-phosphate dehydrogenase* (GAPDH) has been investigated. GroEL does not prevent thermal denaturation of GAPDH, but effectively interacts with the thermodenatured enzyme, thus preventing the aggregation of denatured molecules. Binding of the thermodenatured GAPDH shifts the Tm value of the GroEL thermodenaturation curve by 3 degrees towards higher temperatures and increases the DeltaHcal value 1.44-fold, indicating a significant increase in the thermal stability of the resulting complex. GAPDH thermodenatured in the presence of GroEL cannot be reactivated by the addition of GroES, Mg2+, and ATP. In contrast, GAPDH denatured in guanidine hydrochloride (GAPDHden) is reactivated in the presence of GroEL, GroES, Mg2+, and ATP, yielding 11-15% of its original activity, while the spontaneous reactivation yields only 2-3%. The oxidation of GAPDH with hydrogen peroxide in the presence of 4 M guanidine hydrochloride results in the formation of the enzyme (GAPDHox) that cannot acquire its native conformation and binds to GroEL irreversibly. Binding of GAPDHox to one of the GroEL rings completely inhibits the GroEL-assisted reactivation of GAPDHden, but does not affect the GroEL-assisted reactivation of lactate dehydrogenase (LDH). The data suggest that LDH can be successfully reactivated due to the binding of the denatured molecules to the apical domain of the opposite GroEL ring with their subsequent release into the solution without encapsulation (trans-mechanism). In contrast, GAPDH requires the hydrophilic cavity for the reactivation (cis-mechanism).  相似文献   

7.
In a previous study we have shown that llama VHH antibody fragments are able to bind their antigen after a heat shock of 90 degrees C, in contrast to the murine monoclonal antibodies. However, the molecular mechanism by which antibody:antigen interaction occurs under these extreme conditions remains unclear. To examine in more detail the structural and thermodynamic aspects of the binding mechanism, an extensive CD, ITC, and NMR study was initiated. In this study the interaction between the llama VHH -R2 fragment and its antigen, the dye Reactive Red-6 (RR6) has been explored. The data show clearly that most of the VHH-R2 population at 80 degrees C is in an unfolded conformation. In contrast, CD spectra representing the complex between VHH-R2 and the dye remained the same up to 80 degrees C. Interestingly, addition of the dye to the denatured VHH-R2 at 80 degrees C yielded the spectrum of the native complex. These results suggest an induced refolding of denatured VHH-R2 by its antigen under these extreme conditions. This induced refolding showed some similarities with the well established "induced fit" mechanism of antibody-antigen interactions at ambient temperature. However, the main difference with the "induced fit" mechanism is that at the start of the addition of the antigen most of the VHH molecules are in an unfolded conformation. The refolding capability under these extreme conditions and the stable complex formation make VHHs useful in a wide variety of applications.  相似文献   

8.
We showed previously that the interaction of an alphabeta heterodimeric intermediate with GroEL/GroES is essential for efficient alpha(2)beta(2) assembly of human mitochondrial branched-chain alpha-ketoacid dehydrogenase. In the present study, we further characterized the mode of interaction between the chaperonins and the native-like alphabeta heterodimer. The alphabeta heterodimer, as an intact entity, was found to bind to GroEL at a 1:1 stoichiometry with a K(D) of 1.1 x 10(-)(7) m. The 1:1 molar ratio of the GroEL-alphabeta complex was confirmed by the ability of the complex to bind a stoichiometric amount of denatured lysozyme in the trans cavity. Surprisingly, in the presence of Mg-ADP, GroES was able to cap the GroEL-alphabeta complex in cis, despite the size of 86 kDa of the heterodimer (with a His(6) tag and a linker). Incubation of the GroEL-alphabeta complex with Mg-ATP, but not AMP-PNP, resulted in the release of alpha monomers. In the presence of Mg-ATP, the beta subunit was also released but was unable to assemble with the alpha subunit, and rebound to GroEL. The apparent differential subunit release from GroEL is explained, in part, by the significantly higher binding affinity of the beta subunit (K(D) < 4.15 x 10(-9)m) than the alpha (K(D) = 1.6 x 10(-8)m) for GroEL. Incubation of the GroEL-alphabeta complex with Mg-ATP and GroES resulted in dissociation and discharge of both the alpha and beta subunits from GroEL. The beta subunit upon binding to GroEL underwent further folding in the cis cavity sequestered by GroES. This step rendered the beta subunit competent for reassociation with the soluble alpha subunit to produce a new heterodimer. We propose that this mechanism is responsible for the iterative annealing of the kinetically trapped heterodimeric intermediate, leading to an efficient alpha(2)beta(2) assembly of human branched-chain alpha-ketoacid dehydrogenase.  相似文献   

9.
The Hsp60-type chaperonin GroEL assists in the folding of the enzyme human carbonic anhydrase II (HCA II) and protects it from aggregation. This study was aimed to monitor conformational rearrangement of the substrate protein during the initial GroEL capture (in the absence of ATP) of the thermally unfolded HCA II molten-globule. Single- and double-cysteine mutants were specifically spin-labeled at a topological breakpoint in the β-sheet rich core of HCA II, where the dominating antiparallel β-sheet is broken and β-strands 6 and 7 are parallel. Electron paramagnetic resonance (EPR) was used to monitor the GroEL-induced structural changes in this region of HCA II during thermal denaturation. Both qualitative analysis of the EPR spectra and refined inter-residue distance calculations based on magnetic dipolar interaction show that the spin-labeled positions F147C and K213C are in proximity in the native state of HCA II at 20 °C (as close as ~8 Å), and that this local structure is virtually intact in the thermally induced molten-globule state that binds to GroEL. In the absence of GroEL, the molten globule of HCA II irreversibly aggregates. In contrast, a substantial increase in spin–spin distance (up to >20 Å) was observed within minutes, upon interaction with GroEL (at 50 and 60 °C), which demonstrates a GroEL-induced conformational change in HCA II. The GroEL binding-induced disentanglement of the substrate protein core at the topological break-point is likely a key event for rearrangement of this potent aggregation initiation site, and hence, this conformational change averts HCA II misfolding.  相似文献   

10.
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.  相似文献   

11.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

12.
Molecular chaperones GroEL and GroES facilitate reactivation of denatured rhodanese which folds poorly unless the process is assisted. The present work tests the hypothesis that more extensively unfolded forms of rhodanese bind tighter than those forms that appear later in the folding pathway. The study of the interaction of different urea-induced forms of rhodanese with GroEL suggests that species preceding the domain folded form bind directly and productively to GroEL. Rhodanese partially folds while in the GroEL-GroES-ADP complex, but it does not significantly reach an active state. Partially folded rhodanese can be released from the GroEL-GroES-ADP complex by subdenaturing concentrations of urea as a homogeneous species that is committed to fold to the native conformation with little or no partitioning to the aggregated state. Dilution of denatured rhodanese to the same final concentration gives less active enzyme and significant aggregation. Urea denaturation studies show that active rhodanese released from complexes behaves identically to native enzyme, while spontaneously folded rhodanese has a different stability. These results are interpreted using a previously proposed model based on studies of unassisted rhodanese folding [Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120-128. Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63-70].  相似文献   

13.
The extent of hydrophobic exposure upon bis-ANS binding to the functional apical domain fragment of GroEL, or minichaperone (residues 191-345), was investigated and compared with that of the GroEL tetradecamer. Although a total of seven molecules of bis-ANS bind cooperatively to this minichaperone, most of the hydrophobic sites were induced following initial binding of one to two molecules of probe. From the equilibrium and kinetics studies at low bis-ANS concentrations, it is evident that the native apical domain is converted to an intermediate conformation with increased hydrophobic surfaces. This intermediate binds additional bis-ANS molecules. Tyrosine fluorescence detected denaturation demonstrated that bis-ANS can destabilize the apical domain. The results from (i) bis-ANS titrations, (ii) urea denaturation studies in the presence and absence of bis-ANS, and (iii) intrinsic tyrosine fluorescence studies of the apical domain are consistent with a model in which bis-ANS binds tightly to the intermediate state, relatively weakly to the native state, and little to the denatured state. The results suggest that the conformational changes seen in apical domain fragments are not seen in the intact GroEL oligomer due to restrictions imposed by connections of the apical domain to the intermediate domain and suppression of movement due to quaternary structure.  相似文献   

14.
Fluorescence correlation spectroscopy (FCS) provides information about translational diffusion properties of fluorescent molecules in tiny detection volume and allows the analysis of binding processes of biomolecules in homogeneous solution. In this study, FCS was used to measure equilibrium binding constants of disulfide-reduced apo-alpha-lactalbumin (rLA), denatured pepsin, and apo-cytochrome c (apo-cyt c) bound by chaperonin GroEL at different salt concentrations. The results indicate that apo-cyt-c has a much stronger affinity to GroEL than denatured pepsin and rLA have. Titration experiments of GroEL to each substrate with various concentrations of four kinds of salts (K+, Na+, Ca2+, and Mg2+) show that the binding constant of denatured pepsin and rLA to GroEL depends on the salt concentration. The dependence of denatured pepsin binding to GroEL on salt concentration is much stronger than that of rLA. However, the interaction of positively charged apo-cyt c with GroEL is not affected by the salt concentration. Furthermore, the divalent cation promotes the binding of GroEL to denatured pepsin and rLA more strongly than does the monovalent cation.  相似文献   

15.
The binding of denatured B. stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the E. coli chaperonin GroEL was investigated in two systems: (1) GroEL immobilized on Sepharose via a single subunit was titrated with urea-denatured soluble GAPDH and (2) a Sepharose-bound denatured GAPDH monomer was titrated with soluble GroEL. Similar apparent K D values for the complex GroEL·GAPDH were obtained in both cases (0.04 and 0.03 M, respectively), the stoichiometry being 1.0 mol chaperonin per GAPDH subunit in the system with the immobilized GroEL and 0.2 mol chaperonin per Sepharose-bound GAPDH monomer. Addition of GroEL and Mg·ATP to a reactivation mixture increased the yield of reactivation of both E. coli and B. stearothermophilus GAPDHs. Incubation of the Sepharose-bound catalytically active tetrameric and dimeric GAPDH forms with the protein fraction of a wild-type E. coli cell extract resulted in the binding of GroEL to the dimer and no interaction with the tetrameric form. These data suggest that GroEL may be capable of interacting with the interdimeric contact regions of the folded GAPDH dimers.  相似文献   

16.
A detailed structural analysis of interactions between denatured proteins and GroEL is essential for an understanding of its mechanism. Minichaperones constitute an excellent paradigm for obtaining high-resolution structural information about the binding site and conformation of substrates bound to GroEL, and are particularly suitable for NMR studies. Here, we used transferred nuclear Overhauser effects to study the interaction in solution between minichaperone GroEL(193-335) and a synthetic peptide (Rho), corresponding to the N-terminal alpha-helix (residues 11 to 23) of the mitochondrial rhodanese, a protein whose in vitro refolding is mediated by minichaperones. Using a 60 kDa maltose-binding protein (MBP)-GroEL(193-335) fusion protein to increase the sensitivity of the transferred NOEs, we observed characteristic sequential and mid-range transferred nuclear Overhauser effects. The peptide adopts an alpha-helical conformation upon binding to the minichaperone. Thus the binding site of GroEL is compatible with binding of alpha-helices as well as extended beta-strands. To locate the peptide-binding site on GroEL(193-335), we analysed changes in its chemical shifts on adding an excess of Rho peptide. All residues with significant chemical shift differences are localised in helices H8 and H9. Non-specific interactions were not observed. This indicates that the peptide Rho binds specifically to minichaperone GroEL(193-335). The binding region identified by NMR in solution agrees with crystallographic studies with small peptides and with fluorescence quenching studies with denatured proteins.  相似文献   

17.
Monoclonal antibodies (mAbs) against the Yersinia enterocolitica immunodominant 60 kDa antigen, termed cross-reacting protein antigen (CRPA), were obtained by fusion of spleen cells from mice immunized with CRPA with murine myeloma cells. The reactivities of the mAbs were examined by Western blotting against extracts of Y. enterocolitica and 23 other species of Gram-positive and Gram-negative bacteria. Cross-reactions were recognized with a wide range of bacteria, but not with Gram-positive cocci. The reactivities were different for each mAb, suggesting that both species-specific and multiple cross-reactive epitopes were present on the CRPA molecule. CRPA was produced under heat-shock conditions in Y. enterocolitica and was shown to correspond immunologically to the GroEL protein in Escherichia coli, a protein involved in the morphogenesis of coliphage. In addition to CRPA, at least nine other major heat-shock proteins were detected by two-dimensional gel electrophoresis of extracts of heat-shocked Y. enterocolitica.  相似文献   

18.
The dynamics of the first antigen specific stage of immune response to Brucella infection was experimentally studied with the method of binding adsorbed antigenic immunoreagents with lymphocytes. The study revealed that the content of antigen-binding lymphocytes (ABL) reached its maximum as early as on day 7 after infection, gradually decreasing afterwards (but even on day 90 ABL could be detected in the blood). The specificity of ABL was proved by the fact that they were absent in noninfected animals, while in the animals infected with Brucella their content was higher than that of ABL specific to Yersinia enterocolitica O9; Brucella-specific ABL bound Brucella lipopolysaccharide (LPS) more intensively than Yersinia LPS. The detection of Brucella-specific ABL was inhibited by Brucella LPS more actively than by Yersinia LPS. The evaluation of the affinity of ABL to homologous LPS, made by the ratio of binding immunoreagents of the same specificity, but with suboptimal and optimal specificity, proved that an increase in the avidity of ABL occurred in the dynamics of the infectious process, which corresponded to the increase of their specificity.  相似文献   

19.
Riemerella anatipestifer (RA) infections cause major economic losses in the duck industry. In this study, an immunogenic protein, chaperonin GroEL (GroEL), was identified from the outer membrane of RA strain WJ4 by immunoproteomic assay based on matrix-assisted laser desorption/ionization time of flight mass spectrometry. The complete sequence of the encoding gene, chaperonin groEL (groEL) was amplified and determined to be 1,629 base pairs in length. groEL was then cloned into expression vector pGEX-6P-1, and the expression of the recombinant GroEL (rGroEL) in Escherichia coli strain BL21 was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting analysis. Immunization assay showed that ducklings or rabbits immunized with purified rGroEL generated 53- or 160-fold more anti-GroEL antibodies than those with no immunization. Importantly, bactericidal assay showed that rabbit anti-GroEL serum killed 30.0–57.3% of bacteria representing different serotypes, while rabbit anti-bacterin serum killing activity exhibits large serotype-dependent variations between 0.2% and 63.6%. Animal challenge experiment showed that ducklings immunized with rGroEL were 50%, 37.5%, and 37.5% protected from the challenge with RA strains WJ4 (serotype 1), Th4 (serotype 2), and YXb-2 (serotype 10), respectively. In addition, groEL from 34 additional RA strains was amplified by polymerase chain reaction (PCR), and products from nine were sequenced. groEL is highly conserved among RA strains, as the DNA sequence identity was over 97.5% between WJ4 and the nine additional strains. Our results suggest that GroEL may be a good candidate for new RA vaccine development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号