首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Task allocation mechanisms are employed by multi-robot systems to efficiently distribute tasks between different robots. Currently, many task allocation methods rely on detailed expert knowledge to coordinate robots. However, it may not be feasible to dedicate an expert human user to a multi-robot system. Hence, a non-expert user may have to specify tasks to a team of robots in some situations. This paper presents a novel reduced human user input multi-robot task allocation technique that utilises Fuzzy Inference Systems (FISs). A two-stage primary and secondary task allocation process is employed to select a team of robots comprising manager and worker robots. A multi-robot mapping and exploration task is utilised as a model task to evaluate the task allocation process. Experiments show that primary task allocation is able to successfully identify and select manager robots. Similarly, secondary task allocation successfully identifies and selects worker robots. Both task allocation processes are also robust to parameter variation permitting intuitive selection of parameter values.  相似文献   

2.

A deterministic annealing (DA) method is presented for solving the multi-robot routing problem with min–max objective. This is an NP-hard problem belonging to the multi-robot task allocation set of problems where robots are assigned to a group of sequentially ordered tasks such that the cost of the slowest robot is minimized. The problem is first formulated in a matrix form where the optimal solution of the problem is the minimum-cost permutation matrix without any loops. The solution matrix is then found using the DA method is based on mean field theory applied to a Potts spin model which has been proven to yield near-optimal results for NP-hard problems. Our method is bench-marked against simulated annealing and a heuristic search method. The results show that the proposed method is promising for small-medium sized problems in terms of computation time and solution quality compared to the other two methods.

  相似文献   

3.
This paper addresses the interest of using punctual versus continuous coordination for mobile multi-robot systems where robots use auction sales to allocate tasks between them and to compute their policies in a distributed way. In continuous coordination, one task at a time is assigned and performed per robot. In punctual coordination, all the tasks are distributed in Rendezvous phases during the mission execution. However, tasks allocation problem grows exponentially with the number of tasks. The proposed approach consists in two aspects: (1) a control architecture based on topological representation of the environment which reduces the planning complexity and (2) a protocol based on sequential simultaneous auctions (SSA) to coordinate Robots’ policies. The policies are individually computed using Markov Decision Processes oriented by several goal-task positions to reach. Experimental results on both real robots and simulation describe an evaluation of the proposed robot architecture coupled wih the SSA protocol. The efficiency of missions’ execution is empirically evaluated regarding continuous planning.  相似文献   

4.
This paper describes a heterogeneous modular robot system design which attempts to give a quick solution to a diversity of tasks. The approach is based on the use of an inventory of three types of modules i.e., power and control module, joint module and specialized module. Each module type aims to balance versatility and functionality. Their design permits rapid and cost effective design and fabrication. They are interchangeable in different ways to form different robot or system configurations. Depending on the task, the operator decides what type of robot can provide the best performance within the mission. A spherical joint module is described and used to build different robots, hence, forward and inverse kinematics models are obtained. Finally, from the modules described in this work, several robot configurations such as robotic arms, leg-based robots and wheel-based robots are assembled to demonstrate the execution of manipulation and locomotion tasks.  相似文献   

5.
The current trends in the robotics field have led to the development of large-scale multiple robot systems, and they are deployed for complex missions. The robots in the system can communicate and interact with each other for resource sharing and task processing. Many of such systems fail despite the availability of necessary resources. The major reason for this is their poor coordination mechanism. Task planning, which involves task decomposition and task allocation, is paramount in the design of coordination and cooperation strategies of multiple robot systems. Task allocation mechanism allocates the task in a mission to the robots by maximizing the overall expected performance, and thereby reducing the total allocation cost for the team. In this paper, we formulate a heuristic search-based task allocation algorithm for the task processing in heterogeneous multiple robot system, by maximizing the efficiency in terms of both communication and processing cost. We assume a set of decomposed tasks of a mission, which needs to be allocated to the robots. The near-optimal allocation schemes are found using the proposed peer structure algorithm for the given problem, where the number of the tasks is more than the robots present in the system. The cost function is the summation of static overhead cost of robots, assignment cost, and the communication cost between the dependent tasks, if they are assigned to different robots. Experiments are performed to verify the effectiveness of the algorithm by comparing it with the existing methods in terms of computational time and quality of solution. The experimental results show that the proposed algorithm performs the best under different problem scales. This proves that the algorithm can be scaled for larger system and it can work for dynamic multiple robot system.  相似文献   

6.
基于市场法及能力分类的多机器人任务分配方法   总被引:7,自引:0,他引:7  
柳林  季秀才  郑志强 《机器人》2006,28(3):337-343
针对多机器人系统研究中如何有效地实现复杂任务的分布式动态分配这个基础性问题,提出了一种对这类问题进行形式化描述的一般方法.该方法从能力分类的角度出发,提出了机器人及任务能力向量的概念,并对多机器人任务分配问题进行了形式化描述,讨论了单个及多个机器人合作完成任务的能力条件.基于这种形式化描述方法,提出了一种采用市场机制的完全分布式的多机器人任务分配方法.仿真实验结果表明该方法能够有效地实现多机器人复杂任务的动态分布式分配.  相似文献   

7.
Abstract

The complexity of a vast number of real world tasks provides a great challenge for the currently available robots due to their limited capabilities. Thus, multiple robots would need to form coalitions for the completion of such tasks. In this paper, we examine the multi-robot coalition formation problem for task allocation where a group of robots needs to be allocated to a set of tasks. Our approach for this problem is to use a correlation clustering technique enabling similar robots to form coalitions. The algorithm presented in this paper is fast and scales better in comparison to two existing algorithms.  相似文献   

8.
在多机器人巡逻任务中,由于通信距离的限制,单个机器人很难获得全局信息。然而,现有的大多数多机器人分布式巡逻算法都要求每个机器人获得其巡逻区域的全局信息进行决策。因此,考虑到通信半径约束和局部信息约束,为了通过相邻机器人之间的交互完成巡逻任务,基于离散时间一致性理论提出了两种巡逻算法。算法1使用全局信息进行决策,算法2基于离散时间一致性理论实现局部信息对全局信息的预测进行决策。通过模拟器Stage对所提算法与对比算法在不同机器人数量、通信半径、地图环境下进行了对比。实验验证了所提出的基于局部信息的分布式多机器人巡逻算法具有与原算法类似的特性和性能,能够使机器人在没有全局信息的情况下判断全局状态,并基于邻居之间的协商完成巡逻任务。  相似文献   

9.
Contract Net Protocol is a suitable method for multi-robot task allocation problems. However, it is difficult to find a function to evaluate robots’ bids when each robot gives more than one bid price to reflect its different abilities. We propose a method to fuse these prices and to decide which robot is the successful bidder using a BP neural network. The experiment result shows that the method is effective.  相似文献   

10.
This paper aims to propose a distributed task allocation algorithm for a team of robots that have constraints on energy resources and operate in an unknown dynamic environment. The objective of the allocation is to maximize task completion ratio while minimizing resource usage. The approach we propose is inspired by the social welfare in economics that helps extend the combined operational lifetime of the team by balancing resource consumptions among robots. This social welfare based task allocation method positions a robot team appropriately in preparedness for dynamic future events and enables to achieve the objectives of the system flexibly depending on the application context. Our simulation-based experiments show that the proposed algorithm outperforms a typical market-based approach in various scenarios.  相似文献   

11.
Multi-Robot Task Allocation in Uncertain Environments   总被引:4,自引:0,他引:4  
Multiple cooperating robots hold the promise of improved performance and increased fault tolerance for large-scale problems such as planetary survey and habitat construction. Multi-robot coordination, however, is a complex problem. We cast this problem in the framework of multi-robot dynamic task allocation under uncertainty. We then describe an empirical study that sought general guidelines for task allocation strategies in multi-robot systems. We identify four distinct task allocation strategies, and demonstrate them in two versions of the multi-robot emergency handling task. We describe an experimental setup to compare results obtained from a simulated grid world to those obtained from physical mobile robot experiments. Data resulting from eight hours of experiments with multiple mobile robots are compared to the trend identified in simulation. The data from the simulations show that there is no single strategy that produces best performance in all cases, and that the best task allocation strategy changes as a function of the noise in the system. This result is significant, and shows the need for further investigation of task allocation strategies and their application to planetary exploration.  相似文献   

12.
Intelligent Service Robotics - The problem of task allocation in a multi-robot system is the situation where we have a set of tasks and a number of robots; then each task is assigned to the...  相似文献   

13.
One problem in cooperative multi-robot systems is to reach a group agreement on the distribution of tasks among the robots, known as multi-robot task allocation problem. In case the tasks require a tight cooperation among the robots the formation of adequate subteams, so-called coalitions, is needed which is known to be a NP-complete problem. Here the MuRoCo framework is presented, which solves the coalition formation problem for cooperative heterogeneous multi-robot systems. MuRoCo yields a lower increase of the worst-case complexity compared to previous solutions, while still guaranteeing optimality for sequential multi-robot task assignments. These include also the, in related work often neglected, optimal subtask assignment. In order to reduce the average complexity, which is commonly more relevant in the practical operation, pruning strategies are used that consider system-specific characteristics to reduce the number of potential solutions already in an early phase. To ensure a robust operation in dynamic environments, MuRoCo takes potential disturbances and the environmental uncertainty explicitly into account. This way MuRoCo yields capability- and situation-aware solutions for real world systems. The framework is theoretically analyzed and is practically validated in a cooperative service scenario, showing its suitability to complex applications, its robustness to environmental changes and its ability to recover from failures. Finally a benchmark evaluation shows the realizable problem sizes of the current implementation.  相似文献   

14.
In most multi-robot systems, an individual robot is not capable of solving computationally hard problems due to lack of high processing power. This paper introduces the novel concept of robotic clusters to empower these systems in their problem solving. A robotic cluster is a group of individual robots which are able to share their processing resources, therefore, the robots can solve difficult problems by using the processing units of other robots. The concept, requirements, characteristics and architecture of robotic clusters are explained and then the problem of “topological map merging” is considered as a case study to describe the details of the presented idea and to evaluate its functionality. Additionally, a new parallel algorithm for solving this problem is developed. The experimental results proved that the robotic clusters remarkably speedup computations in multi-robot systems. The proposed mechanism can be used in many other robotic applications and has the potential to increase the performance of multi-robot systems especially for solving problems that need high processing resources.  相似文献   

15.
In this paper, we consider dynamic multirobot tasks that can be done by any of the robots, but only with the assistance of any other robot. We propose a novel approach based on the concept of ‘assistance networks’ with two complementary aspects, namely assistant finding and network topology update. Each robot, encountering a new task, seeks an assisting robot among its immediate neighbors in the assistance network in a decentralized manner. The network topology is defined based on pairwise stability via payoff functions that consider general task-related guidelines. As such, the number of potential assisting robots can be ensured a priori depending on tasks’ requirements. As robots move around, the topology is updated via pairwise games. If the games are conducted by a network coordinator, each game is shown to result in a pairwise stable network. A series of simulation and experimental results in a variety of different scenarios demonstrate that the robots are able to get assistance or give assistance flexibly.  相似文献   

16.
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption, we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method, which can flexibly optimize the task completion number and the resource consumption according to the application contexts. Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.   相似文献   

17.
对多机器人系统任务分配策略进行了形式化描述,为任务分配方案的求解提供了一种数学描述工具;针对多机器人系统中机器人决策之间的相互依存性,引入博弈论的思想分析了多机器人系统的任务分配问题,提出了一种基于博弈论的多机器人系统任务分配算法(GT-MRTA).实验结果表明,算法复杂度较低,计算量较小,鲁棒性较好,获得的任务分配方案质量较高.  相似文献   

18.
Auction and market-based mechanisms are among the most popular methods for distributed task allocation in multi-robot systems. Most of these mechanisms were designed in a heuristic way and analysis of the quality of the resulting assignment solution is rare. This paper presents a new market-based multi-robot task allocation algorithm that produces optimal assignments. Rather than adopting a buyer’s “selfish” bidding perspective as in previous auction/market-based approaches, the proposed method approaches auctioning from a merchant’s point of view, producing a pricing policy that responds to cliques of customers and their preferences. The algorithm uses price escalation to clear a market of all its items, producing a state of equilibrium that satisfies both the merchant and customers. This effectively assigns all robots to their tasks. The proposed method can be used as a general assignment algorithm as it has a time complexity ( \(O(n^3 \text {lg} n)\) ) close to the fastest state-of-the-art algorithms ( \(O(n^3)\) ) but is extremely easy to implement. As in previous research, the economic model reflects the distributed nature of markets inherently: in this paper it leads directly to a decentralized method ideally suited for distributed multi-robot systems.  相似文献   

19.
We present empirical results of an auction-based algorithm for dynamic allocation of tasks to robots. The results have been obtained both in simulation and using real robots. A distinctive feature of our algorithm is its robustness to uncertainties and to robot malfunctions that happen during task execution, when unexpected obstacles, loss of communication, and other delays may prevent a robot from completing its allocated tasks. Therefore tasks not yet achieved are resubmitted for bids every time a task has been completed. This provides an opportunity to improve the allocation of the remaining tasks, enabling the robots to recover from failures and reducing the overall time for task completion.  相似文献   

20.
Abstract

We present an auction-based method for a team of robots to allocate and execute tasks that have temporal and precedence constraints. Temporal constraints are expressed as time windows, within which a task must be executed. The robots use our priority-based iterated sequential single-item auction algorithm to allocate tasks among themselves and keep track of their individual schedules. A key innovation is in decoupling precedence constraints from temporal constraints and dealing with them separately. We demonstrate the performance of the allocation method and show how it can be extended to handle failures and delays during task execution. We leverage the power of simulation as a tool to analyze the robustness of schedules. Data collected during simulations are used to compute well-known indexes that measure the risk of delay and failure in the robots’ schedules. We demonstrate the effectiveness of our method in simulation and with real robot experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号