首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of pre-intermediate separation on the flexural behavior of strengthened steel–concrete composite beams by either adhesively bonded carbon fiber reinforced polymers (CFRP) sheet or welded/bonded steel plate was studied. In the case of strengthened by CFRP sheet, two different attachment patterns, namely, CFRP sheet wrapped around the flange of the I-beam and CFRP sheet wrapped around the flange along with a part of the web, were examined by testing four different strengthened steel–concrete composite beams under four point bending (4PB). Two of these beams were strengthened by fully bonded CFRP sheet with the two different patterns, while, the others are similar but have pre-intermediate debonding area of 50 mm length × flange width at the bottom surface of the lower flange. In the case of strengthened by steel plate, three different attachment patterns of steel plate to the soffit of the beams, namely, discontinuously welded, end welded, and bonded/welded steel plates, were also tested under 4PB.The experimental results showed that, there is no growth of the intermediate debonding before the yield of the lower flange occurred for all strengthened beams by CFRP sheet. After yielding, the beams with pre-debonding area showed lower flexural capacity than those with fully bonding due to the rapid growth of the intermediate debonding. On the other hand, there is a difference in the yield load between the three different patterns of the welded steel plates with a marginal difference in the elastic stiffness.  相似文献   

2.
An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. Utilizing the merits of both steel and concrete material, the size of the steel beams can be reduced without sacrificing performance. The bottom flange of the steel beam is reinforced with concrete at a manufacturing plant, eliminating the use of temporary pour forms. The composite beams were tested to investigate how the size of the wide flange steel and how the top and bottom reinforcements influence the behaviour of the beams. Flexural load carrying capacity, load displacement relationships and failure modes were examined. The test specimens were T‐shaped composite beams with slabs, each measuring 10‐m long. The flexural moment strength of all of the composite beams—at both the yield limit state and the maximum load limit state—was measured and compared with the analytical flexural capacity. The stiffness degradation, ductility and dissipating energy capabilities of the composite beams were investigated based on the hysteresis curves. The composite beams tested in this study successfully reduced both the floor height of the building and the size of the steel beams needed to meet code requirements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
以钢板代替受力钢筋,通过栓钉将外侧钢板与内部混凝土板相连,二者共同作用形成钢板-混凝土组合板。根据钢板布置形式的不同,可将钢板-混凝土组合板分为单面钢板-混凝土组合板(SSC)和双面钢板-混凝土组合板(DSC)。通过对4个SSC试件和3个DSC试件的受弯试验研究,分析了不同钢板厚度、抗剪连接程度以及构造钢筋配置对组合板受弯性能和破坏形态的影响。试验结果表明,按完全抗剪连接设计的试件破坏形态与适筋梁相似,具有良好的受弯承载能力和延性;当受拉区钢板采用部分抗剪连接设计时,剪跨区栓钉易剪断导致承载力明显降低;当受压区钢板采用部分抗剪连接设计时,顶层钢板易发生局部屈曲,导致试件承载力和延性有所降低。基于试验结果,给出了钢板-混凝土组合板的受弯承载力计算式,计算值与试验值吻合较好。  相似文献   

4.
为了研究翼缘非等厚矩形钢管混凝土梁的受力性能,进行了7根钢管混凝土梁的四点弯曲试验,试件的变化参数为钢管上、下翼缘厚度和混凝土强度。结果表明,钢管上下翼缘厚度之比越小,承载力极限状态下的截面中性轴越靠下,表明参与工作的混凝土越多,组合截面承载性能越好;当上下翼缘厚度之比约为1/3时,通过提高混凝土的强度能有效增大构件的受弯承载力。采用有限元软件ABAQUS对受弯试验进行了全过程模拟,得到的结果与试验结果吻合。模拟分析还表明,优化后的翼缘非等厚矩形钢管混凝土截面不仅增大了钢管分担的弯矩,同时也增加了混凝土的工作面积,两者共同作用提升了构件的受弯承载力,当含钢率约为0.2时,承载力相较于等壁厚构件可提升15%以上。在平截面假定的基础上推导了翼缘非等厚矩形钢管混凝土组合截面受弯承载力的解析表达式,并探讨了对构件截面的优化问题,特别对含钢率较高的高强混凝土构件,优化截面的承载力提高效果显著。研究结果表明,翼缘非等厚矩形钢管混凝土梁具有良好的承载性能和变形性能。  相似文献   

5.
Strengthening and rehabilitation of structures is a major concern for researchers in the civil engineering community in recent years due to the aging of these structures and the need for effective methods of strengthening. This paper presents the results of an experimental study of the behavior of strengthened steel–concrete composite girders using Carbon Fiber Reinforced Polymers (CFRP) plates. Strengthening was achieved by attaching the CFRP plates to the bottom flange and in some beams the CFRP plates were also attached to the beam web. Two different types of CFRP plates were used being mainly different in the tensile modulus of elasticity. Shear stress distribution along the bond line between CFRP plates and steel was recorded and reported. The test results showed that using lightweight CFRP plates could enhance the strength and stiffness of steel–concrete composite girders up to 45% of the original strength.  相似文献   

6.
为研究剪力连接程度对预应力钢与混凝土组合箱梁的界面相对滑移、挠度及受弯承载力的影响,设计制作了4根不同剪力连接程度预应力钢与混凝土组合箱梁模型试件,采用三分点对称加载,对其进行了受弯性能试验研究。研究表明,随着剪力连接程度的降低,变形及界面滑移明显增大,承载能力有所降低,但并不与剪力连接程度成正比关系,连接程度为0.5的组合箱梁承载力较完全连接组合箱梁降低不到30%。结合国内外7根部分剪力连接组合梁试验资料, 运用最小二乘法,对欧洲规范EC4中关于部分剪力连接组合梁承载力计算公式进行了修正。结果表明,修正值与实测值吻合良好,满足工程精度要求。  相似文献   

7.
波形钢腹板组合槽型梁是一种新型下承式开口薄壁桥梁结构,对4片按照1/4相似比进行设计的试验梁进行两点对称加载和有限元分析,研究两组试验梁在对称荷载作用下的荷载位移关系、截面应变分布、裂缝发展规律和破坏形态等,分析张拉预应力和释放预弯力后试验梁底板混凝土的有效预压应力。研究表明:竖向荷载作用下试验梁符合平截面变形规律,应忽略波形钢腹板对抗弯刚度的贡献和底板混凝土对抗弯承载力的抵抗作用;试验梁混凝土受压区受限于上翼缘板,其应变分布为梯形而非常规的三角形分布;下承式槽型截面的中性轴偏低,波形钢腹板预弯钢梁反弹能够有效地对混凝土施加预压应力;采用波形钢腹板能有效提高槽型梁的预应力施加效率,文中建议的波形钢腹板组合梁预应力等效荷载法,能准确计算此类结构的混凝土有效预压应力;两组试验梁由于配筋量的不同分别发生塑性和脆性弯曲破坏;波形钢腹板组合槽型梁的自重轻、抗弯刚度较大、具有较好的延性和抗裂性能。  相似文献   

8.
下翼缘组件可更换框架组合梁的设计方法及验证   总被引:1,自引:0,他引:1  
梁端塑性铰机制是普通框架结构在地震作用下的一种常设耗能模式,但其震后修复困难,为此提出了一种可更换耗能组合梁,由上翼缘连接板件和下翼缘角钢连接相邻梁段。连接处截面中性轴位于上翼缘处,从而将损伤集中于梁下翼缘的连接角钢上,震后仅需更换角钢,以期快速恢复结构功能。详细分析了该组合梁的传力机制,建立了设计方法,并通过试验予以检验。试验结果表明,组合梁的弹性刚度、变形分布、连接处中性轴的位置以及屈服承载力和塑性转动能力均能达到设计预期,在设定的损伤变形范围内更换角钢可以基本恢复结构性能。  相似文献   

9.
This paper presents the results of experimental investigation undertaken for evaluating the cyclic response of concrete members which have already experienced structural damage and total loss of load resistance due to splitting bond failure of the tensile reinforcement, and then repaired for upgrading their bond strength and flexural capacity. The original (intact) specimens consisted of beams reinforced with identical top and bottom spliced reinforcement and subjected to inelastic cyclic load reversals until total bond degradation and complete loss of flexural strength. The repair procedure consisted of removing the deteriorated concrete within the damaged splice zone, adding concrete confinement and casting new concrete. Three types of concrete confinement were investigated, namely, internal confinement by steel ties or wire mesh reinforcement, and external confinement by FRP laminates. It was found that repairing the bond-damaged zone through concrete confinement leads to substantial regain of flexural stiffness and strength up to or exceeding those for the original specimens, reduces the structural damage, and results in considerable improvement of the energy absorption and dissipation capacity under cyclic loading. The experimental results were discussed, and comparison between the experimental data and analytical predictions is undertaken.  相似文献   

10.
The effects of important parameters (beam reinforcing plates, initial post-tensioning, and material properties of steel angles) on the behavior of hexagonal castellated beams in post-tensioned self-centering (PTSC) connections undergone cyclic loading up to 4% lateral drift have been investigated by finite element (FE) analysis using ABAQUS. The PTSC connection is comprised of bolted top and bottom angles as energy dissipaters and steel strands to provide self-centering capacity. The FE analysis has also been validated against the experimental test. The new formulations derived from analytical method has been proposed to predict bending moment of PTSC connections. The web-post buckling in hexagonal castellated beams has been identified as the dominant failure mode when excessive initial post-tensioning force is applied to reach greater bending moment resistance, so it is required to limit the highest initial post-tensioning force to prevent this failure. Furthermore, properties of steel material has been simulated using bilinear elastoplastic modeling with 1.5% strain-hardening which has perfectly matched with the real material of steel angles. It is recommended to avoid using steel angles with high yielding strength since they lead to the yielding of bolt shank. The necessity of reinforcing plates to prevent beam flange from local buckling has been reaffirmed.  相似文献   

11.
This work presents results of experimental and analytical studies of self-centering moment connections. The connection subassembly consists of post-tensioned steel beams, a reinforced concrete column, and energy dissipators placed only below the beam bottom flange for simplicity of construction, ease of replacement, and no interference with the composite slab. Two types of steel energy dissipators are proposed: one includes a reduced section plate restrained by two flat plates, and the other uses cross-shaped steel plates. Cyclic tests are conducted on three full-scale post-tensioned connection subassemblies and six energy dissipators. Finite element analysis is performed to investigate the cyclic performance and likelihood of fracture at critical regions in the energy dissipators. Cyclic test results show that (1) energy dissipation, moment, and flexural stiffness of the beam in positive bending are larger than those of the beam in negative bending, (2) the location of the compression toe at the end of the beam stabilizes at the junction between the beam flange and web after an interstory drift of 1.5%, in which the gap opening angles of the beams are similar in both bending directions, and (3) the shoulder radius equal to 2.5 times plate thickness results in a premature fracture along the shape transition of the reduced section plate. This study also develops an iterative analytical procedure for predicting un-symmetrical cyclic responses of post-tensioned connection subassemblies.  相似文献   

12.
This paper is concerned with the elastic lateral–distortional (LD) buckling of single span steel monorail I-beams and its influence on their design strengths. The distortion of a slender web reduces the elastic buckling resistance of an intermediate length beam below its flexural–torsional (FT) resistance. A finite element computer program was used to study the elastic LD buckling of single span beams. The LD to FT buckling moment ratios were generally higher for simply supported beams with bottom flange central concentrated loads than for uniform bending, and lower for shear centre concentrated loads. For beams with bottom flange loading and unrestrained bottom flanges, there were very significant reductions in these ratios, but they increased when rigid web stiffeners or top flange torsional restraints were provided at the supports. For beams with bottom flange loading and unrestrained bottom flanges, the reductions in the elastic buckling resistance were greater for beams with stocky flanges than for slender flanges. Approximations were found for estimating the reduced resistances which were generally of high accuracy or conservative, and for estimating the increased resistances caused by elastic and rigid top flange end torsional restraints. A method of designing steel beams against LD buckling was proposed and its use demonstrated by a worked example.  相似文献   

13.
郑永乾  曾少昔 《建筑结构学报》2022,43(4):198-207,219
为研究不同加载角度下T形带肋和多室钢管混凝土构件的纯弯性能,以加载角度(0°、63°、90°、117°和180°)为试验参数,进行了 11个T形钢管混凝土构件(包括5个带肋、5个多室和1个无肋)的纯弯试验,获得了破坏形态、弯矩-挠度曲线、应变、受弯承载力和抗弯刚度.建立了不同加载角度下T形构件有限元模型,考虑了残余应力...  相似文献   

14.
楼板在地震作用下对钢筋混凝土柱-钢梁组合体抗震性能的影响是建立地震作用下节点计算模型的基础,也是准确评价组合结构体系抗震性能的关键问题之一。为此,完成了3个钢筋混凝土柱-钢梁(RCS)空间组合体试件在考虑不同楼板宽度情况下的抗震性能试验,分析整个受力过程中楼板受力性态对组合构件受力特征、破坏模式等抗震性能的影响。各试验模型在加载过程中均产生梁铰破坏,并表现出较好的延性和耗能能力,最终因节点区钢梁屈曲、扁钢箍开裂和柱端混凝土压碎而丧失承载力。分析表明,楼板裂缝以横向裂缝为主,随着楼板宽度增加,次生斜裂缝增多,板底混凝土压碎区域增大;混凝土楼板与钢梁组合体对节点核心区的约束作用较明显地改善了空间组合体受力性能。对楼板混凝土和板内纵筋在受力过程中的应变进行分析,结果表明,随着楼板宽度的增加,楼板对RCS空间组合体刚度、承载力的贡献值有限。对现浇板受拉有效翼缘宽度进行分析,结果表明考虑钢-混凝土组合梁翼缘有效宽度对梁端受弯承载力、惯性矩影响较大。  相似文献   

15.
This paper introduces the concept of a wide flange steel beam with the bottom flange encased in pre‐cast concrete. These composite beams utilize the merits of both steel and concrete materials. The effective interaction between the two materials can reduce the size of the steel beams. The reinforcement and the concrete are pre‐integrated with the bottom flange of the steel beam at a manufacturing plant. In this paper, the analytical investigation of the flexural moment strength of the composite beams at both the yield limit state and the maximum load limit state is performed and compared with the experimental results. The depth of the equivalent rectangular stress block of the beams is obtained using an equilibrium equation when both the compression steel reinforcements are present. The post‐yield behaviour of the composite beams is also investigated based on the normalized effective stiffness versus the normalized drift ratio . The stiffness of the composite beams degrades gradually with sufficient ductility and dissipating energy capability. A six‐step procedure provides a fast, effective and accurate way of investigating the post‐yield behaviour of the composite beams. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
内置钢板深梁剪力墙是由钢管混凝土柱、柱间钢板深梁、混凝土墙体及其连接构件组成。对5个1/5缩尺的该组合剪力墙模型进行了低周反复荷载试验。试验分两阶段进行,第一阶段试验研究位移角小于1/50试件的抗震性能,第二阶段试验研究第一阶段损伤试件修复后的抗震性能,修复采用剪力墙边框钢管间两侧贴焊薄钢板的方法。分析了各试件修复前后的破坏特征、滞回特性、承载力、刚度退化、位移延性、耗能性能。结果表明:内置钢板深梁剪力墙的钢管混凝土柱、钢板深梁、混凝土墙体及连接构件相互作用,协同受力,具有良好的抗震性能;变形特征具有阶段性,在混凝土和部件连接界面损伤前与整体剪力墙变形接近,在连接界面损伤滑移后与带竖缝剪力墙接近。  相似文献   

17.
H. -L. Hsu  P. -S. Chi 《Thin》2003,41(1):47-67
This paper focuses on the flexural behavior of cold-formed steel members with symmetrical axes. The cold-formed section is clamped at a flange location to form a closed loop. Forty-one specimens with various lengths and sectional dimensions were tested under monotonic and cyclic loading to study their static and dynamic responses. It was found that members with higher flexural rigidities exhibited stiffer pre-buckling behavior, however, higher strength loss was encountered during the post-buckling stages than in members with lower flexural rigidities. A modified analytical model based on test result calibration for the calculation of sectional properties is proposed for design reference.  相似文献   

18.
为降低大跨、重荷建筑的建设工程造价,提出一种预制装配部分外包混凝土组合梁(PPECB)。设计了7根受弯组合梁试件进行静力试验以研究其受弯性能,考虑浇筑方式、工字钢翼缘厚度、混凝土强度等级、配箍形式对其承载力的影响,研究破坏模式、应变发展和受弯承载力,明确预制装配部分外包混凝土组合梁的破坏机制。结果表明:7根组合梁表现出相似的受力性能,均发生弯曲破坏;PPECB开裂荷载与整浇部分外包混凝土(PEC)梁近似,屈服荷载、峰值荷载略低于整浇PEC梁;随混凝土强度等级的提高,PPECB开裂及屈服荷载增大,但峰值荷载无明显提升;PPECB开裂、屈服、峰值荷载随工字钢翼缘厚度增加而提高;配箍形式对PPECB开裂荷载无明显影响,拉杆形式PPECB屈服、极限荷载均低于半封闭箍筋形式PPECB。给出了预制装配部分外包混凝土组合梁的受弯承载力计算公式,其计算结果与试验结果吻合较好。  相似文献   

19.
为研究外包角钢-混凝土组合梁的受力性能,设计并制作了4根外包角钢-混凝土组合梁试件,进行单调静载抗弯承载性能试验。试验实测了跨中挠度、混凝土应变、型钢应变、裂缝宽度等重要数据,绘制出构件荷载-位移曲线、荷载-应变曲线和应变沿截面高度分布的曲线,并对试验结果进行分析。试验结果表明:4根组合梁试件破坏形态均为弯曲破坏;组合梁有较优越的力学性能,承载性能高,延性较好;试件截面平均应变符合平截面假定。  相似文献   

20.
Compactness and lateral support configuration provisions for design of steel beams are formulated so as to ensure that the resulting beam exhibits adequate ductility. It appears from the current research that slenderness limitations are not valid for beams made of the high strength steel grades. In this paper an attempt is made to study on influence of flange and web slenderness as well as lateral support spacing of homogenous and hybrid welded I-sections made of high strength steel on member ductility. For this purpose an experimentally verified nonlinear numerical analysis of the local and overall stability was performed. These beams are subjected to constant moment loading a new theoretical method is proposed to calculate the rotation capacity for this loading type. A comparative study was carried out between this method and numerical study results to ensure the accuracy of proposed method. In this research realistic material behavior and residual stresses were adopted in finite element models. Results have shown that using the high strength steel in cross sections subjected to bending has a significant effect on flexural behavior of these members. Meanwhile, in present study, interaction between the flange and web slenderness ratios was evaluated in accordance to AISC criteria for compact sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号