首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper presented a new prediction model of pressure-volume-temperature (PVT) properties of crude oil systems using sensitivity based linear learning method (SBLLM). PVT properties are very important in the reservoir engineering computations. The accurate determination of these properties, such as bubble-point pressure and oil formation volume factor, is important in the primary and subsequent development of an oil field. Earlier developed models are confronted with several limitations especially their instability and inconsistency during predictions. In this paper, a sensitivity based linear learning method (SBLLM) prediction model for PVT properties is presented using three distinct databases while comparing forecasting performance, using several kinds of evaluation criteria and quality measures, with neural network and the three common empirical correlations. In the formulation used, sensitivity analysis coupled with a linear training algorithm for each of the two layers is employed which ensures that the learning curve stabilizes soon and behaves homogenously throughout the entire process operation. In this way, the model will be able to adequately model PVT properties faster with high stability and consistency. Empirical results from simulations demonstrated that the proposed SBLLM model produced good generalization performance, with high stability and consistency, which are requisites of good prediction models in reservoir characterization and modeling.  相似文献   

2.
In this work, the use of type-2 fuzzy logic systems as a novel approach for predicting permeability from well logs has been investigated and implemented. Type-2 fuzzy logic system is good in handling uncertainties, including uncertainties in measurements and data used to calibrate the parameters. In the formulation used, the value of a membership function corresponding to a particular permeability value is no longer a crisp value; rather, it is associated with a range of values that can be characterized by a function that reflects the level of uncertainty. In this way, the model will be able to adequately account for all forms of uncertainties associated with predicting permeability from well log data, where uncertainties are very high and the need for stable results are highly desirable. Comparative studies have been carried out to compare the performance of the proposed type-2 fuzzy logic system framework with those earlier used methods, using five different industrial reservoir data. Empirical results from simulation show that type-2 fuzzy logic approach outperformed others in general and particularly in the area of stability and ability to handle data in uncertain situations, which are common characteristics of well logs data. Another unique advantage of the newly proposed model is its ability to generate, in addition to the normal target forecast, prediction intervals as its by-products without extra computational cost.  相似文献   

3.
Pressure–volume–temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson–Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.  相似文献   

4.
In this paper the fuzzy set as discussed by Zadeh is viewed as a multivalued logic with a continuum of truth values in the interval [0,1]. The concept of static hazard in combinational switching systems is related to fuzzy logic and various properties of this relation are established. The paper derives the necessary and sufficient conditions for a fuzzy function to adequately describe the steady-state and static hazard behavior of a combinational system, by extending the ternary method discussed by Yoeli and Rinon and using the resolution principle of mechanical theorem-proving.  相似文献   

5.
This paper presents an indirect approach to interval type-2 fuzzy logic system modeling to forecaste the level of air pollutants. The type-2 fuzzy logic system permits us to model the uncertainties among rules and the parameters related to data analysis. In this paper, we propose an indirect method to create an interval type-2 fuzzy logic system from a historical data, where Footprint of Uncertainties of fuzzy sets are extracted by implementation of an interval type-2 FCM algorithm and based on an upper and lower value for the level of fuzziness m in FCM. Finally, the proposed model is applied for prediction of carbon monoxide concentration in Tehran air pollution. It is shown that the proposed type-2 fuzzy logic system is superior in comparison to type-1 fuzzy logic systems in terms of two performance indices.  相似文献   

6.
This paper presents a novel learning methodology based on a hybrid algorithm for interval type-2 fuzzy logic systems. Since only the back-propagation method has been proposed in the literature for the tuning of both the antecedent and the consequent parameters of type-2 fuzzy logic systems, a hybrid learning algorithm has been developed. The hybrid method uses a recursive orthogonal least-squares method for tuning the consequent parameters and the back-propagation method for tuning the antecedent parameters. Systems were tested for three types of inputs: (a) interval singleton, (b) interval type-1 non-singleton, and (c) interval type-2 non-singleton. Experiments were carried out on the application of hybrid interval type-2 fuzzy logic systems for prediction of the scale breaker entry temperature in a real hot strip mill for three different types of coil. The results proved the feasibility of the systems developed here for scale breaker entry temperature prediction. Comparison with type-1 fuzzy logic systems shows that hybrid learning interval type-2 fuzzy logic systems provide improved performance under the conditions tested.  相似文献   

7.
Neural networks (NNs), type-1 fuzzy logic systems and interval type-2 fuzzy logic systems (IT2FLSs) have been shown to be important methods in real world applications, which range from pattern recognition, time series prediction, to intelligent control. Recent research shows that embedding an IT2FLS on an NN can be very effective for a wide number of non-linear complex systems, especially when handling imperfect or incomplete information. In this paper we are presenting several models of interval type-2 fuzzy neural networks (IT2FNNs) that use a set of rules and interval type-2 membership functions for that purpose. Simulation results of non-linear function identification using the IT2FNN for one and three variables and for the Mackey–Glass chaotic time series prediction are presented to illustrate that the proposed models have potential for real world applications.  相似文献   

8.
The well known Takagi–Sugeno (T–S) fuzzy model can be extended in different ways including the polynomial fuzzy model, whose consequent parts are polynomial sub-systems. Compared with the traditional T–S fuzzy model, the polynomial fuzzy model can represent a nonlinear system more accurately with a smaller number of fuzzy logic rules. It is worth emphasizing that the stability analysis and controller design of polynomial fuzzy model-based (PFMB) control systems are not based on the linear matrix inequalities but the recently developed sum-of-squares decompositions. In this paper, based on an existing result for traditional fuzzy control systems, we propose a new stability condition for the stability analysis of PFMB control systems. Furthermore, the stability of PFMB control systems with parameter uncertainties is investigated. The popular inverted pendulum and an unstable nonlinear system are employed to demonstrate the quality of the proposed stability conditions.  相似文献   

9.
Extreme learning machines (ELM), as a learning tool, have gained popularity due to its unique characteristics and performance. However, the generalisation capability of ELM often depends on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. In order to reduce the effects of uncertainties in ELM prediction and improve its generalisation ability, this paper proposes a hybrid system through a combination of type-2 fuzzy logic systems (type-2 FLS) and ELM; thereafter the hybrid system was applied to model permeability of carbonate reservoir. Type-2 FLS has been chosen to be a precursor to ELM in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. The type-2 FLS is used to first handle uncertainties in reservoir data so that its final output is then passed to the ELM for training and then final prediction is done using the unseen testing dataset. Comparative studies have been carried out to compare the performance of the proposed T2-ELM hybrid system with each of the constituent type-2 FLS and ELM, and also artificial neural network (ANN) and support Vector machines (SVM) using five different industrial reservoir data. Empirical results show that the proposed T2-ELM hybrid system outperformed each of type-2 FLS and ELM, as the two constituent models, in all cases, with the improvement made to the ELM performance far higher against that of type-2 FLS that had a closer performance to the hybrid since it is already noted for being able to model uncertainties. The proposed hybrid also outperformed ANN and SVM models considered.  相似文献   

10.
Reliable effort prediction remains an ongoing challenge to software engineers. Traditional approaches to effort prediction such as the use of models derived from historical data, or the use of expert opinion are plagued with issues pertaining to their effectiveness and robustness. These issues are more pronounced when the effort prediction is used during the early phases of the software development lifecycle. Recent works have demonstrated promising results obtained with the use of fuzzy logic. Fuzzy logic based effort prediction systems can deal better with imprecision, which characterizes the early phases of most software development projects, for example requirements development, whose effort predictors along with their relationships to effort are characterized as being even more imprecise and uncertain than those of later development phases, for example design. Fuzzy logic based prediction systems could produce further better estimates provided that various parameters and factors pertaining to fuzzy logic are carefully set. In this paper, we present an empirical study, which shows that the prediction accuracy of a fuzzy logic based effort prediction system is highly dependent on the system architecture, the corresponding parameters, and the training algorithms.  相似文献   

11.
一类非线性离散时间系统的模糊辨识   总被引:1,自引:1,他引:0       下载免费PDF全文
对一类非线性离散时间系统提出了模糊辨识方法,此方法用与未知参数向量成线性关系的模糊逻辑系统作为辨识模型,并通过自适应学习律对此模糊逻辑系统中的未知参数进行自适应调节,文中证明了此方法可使辨识误差收敛到原点的一个邻域内。仿真结果验证了此方法的有效性。  相似文献   

12.
Type-2 fuzzy logic systems have extensively been applied to various engineering problems, e.g. identification, prediction, control, pattern recognition, etc. in the past two decades, and the results were promising especially in the presence of significant uncertainties in the system. In the design of type-2 fuzzy logic systems, the early applications were realized in a way that both the antecedent and consequent parameters were chosen by the designer with perhaps some inputs from some experts. Since 2000s, a huge number of papers have been published which are based on the adaptation of the parameters of type-2 fuzzy logic systems using the training data either online or offline. Consequently, the major challenge was to design these systems in an optimal way in terms of their optimal structure and their corresponding optimal parameter update rules. In this review, the state of the art of the three major classes of optimization methods are investigated: derivative-based (computational approaches), derivative-free (heuristic methods) and hybrid methods which are the fusion of both the derivative-free and derivative-based methods.  相似文献   

13.
In the automotive industry, suspension systems are designed to provide desirable vehicle ride and handling properties. This paper presents the development of a robust intelligent nonlinear controller for active suspension systems based on a comprehensive and realistic nonlinear model. The inherent complex nonlinear system model's structure, and the presence of parameter uncertainties, have increased the difficulties of applying conventional linear and nonlinear control techniques. Recently, the combination of sliding mode, fuzzy logic, and neural network methodologies has emerged as a promising technique for dealing with complex uncertain systems. In this paper, a sliding mode neural network inference fuzzy logic controller is designed for automotive suspension systems in order to enhance the ride and comfort. Extensive simulations are performed on a quarter-car model, and the results show that the proposed controller outperforms existing conventional controllers with regard to body acceleration, suspension deflection, and tire deflection  相似文献   

14.
15.
This paper presents the optimization of a fuzzy edge detector based on the traditional Sobel technique combined with interval type-2 fuzzy logic. The goal of using interval type-2 fuzzy logic in edge detection methods is to provide them with the ability to handle uncertainty in processing real world images. However, the optimal design of fuzzy systems is a difficult task and for this reason the use of meta-heuristic optimization techniques is also considered in this paper. For the optimization of the fuzzy inference systems, the Cuckoo Search (CS) and Genetic Algorithms (GAs) are applied. Simulation results show that using an optimal interval type-2 fuzzy system in conjunction with the Sobel technique provides a powerful edge detection method that outperforms its type-1 counterparts and the pure original Sobel technique.  相似文献   

16.
Optimal tracking design for stochastic fuzzy systems   总被引:1,自引:0,他引:1  
In general, fuzzy control design for stochastic nonlinear systems is still difficult since the fuzzy bases are stochastic so as to increase the difficulty and complexity of the fuzzy tracking control design. In this study, a fuzzy stochastic moving-average model with control input (fuzzy ARMAX model) is introduced to describe nonlinear stochastic systems. From the fuzzy ARMAX model, a fuzzy one-step ahead prediction model is developed. Based on a fuzzy one-step ahead prediction stochastic model, optimal design algorithms are proposed to achieve the optimal tracking of nonlinear stochastic systems. In this study, the minimum variance tracking control, generalized minimum variance tracking control, and the optimal model reference tracking control are developed for stochastic fuzzy systems. We construct some basic stability conditions for general stochastic fuzzy systems and use these conditions to verify the stability of the fuzzy tracking control systems. Finally, two simulation examples are given to indicate the performance of the proposed methods.  相似文献   

17.
A new software technique for determining emotional tension on humans is developed by means of psychological tests connected with the psycho-emotional sphere and on indicators characterizing the state of a subject’s visual attention. Each of these two areas determines several factors for psycho-emotional tension. The level of tension is determined as an aggregate of these two components with the rules of fuzzy logic. The membership functions and solving rules for the psychological tests, and for the state of visual attention, are constructed using fuzzy logic theory. It is shown that the resulting method can be used as an informative feature for prediction of many properties, such as the situational awareness (training and experience) of an operator and the operator’s individual capacity to function (mental-physiological limits). The second group of indicators characterize properties such as switchable attention (the ability to switch attention) (SWA), concentration (ability to concentrate) (CNA), stability of visual attention (STA) and parameters determining the state of memory. One of the most important issues for man-machine systems is to evaluate the performance of operators under abnormal conditions such as stress or tension.  相似文献   

18.
Linguistic modeling of complex irregular systems constitutes the heart of many control and decision making systems, and fuzzy logic represents one of the most effective algorithms to build such linguistic models. In this paper, a linguistic (qualitative) modeling approach is proposed. The approach combines the merits of the fuzzy logic theory, neural networks, and genetic algorithms (GAs). The proposed model is presented in a fuzzy-neural network (FNN) form which can handle both quantitative (numerical) and qualitative (linguistic) knowledge. The learning algorithm of a FNN is composed of three phases. The first phase is used to find the initial membership functions of the fuzzy model. In the second phase, a new algorithm is developed and used to extract the linguistic-fuzzy rules. In the third phase, a multiresolutional dynamic genetic algorithm (MRD-GA) is proposed and used for optimized tuning of membership functions of the proposed model. Two well-known benchmarks are used to evaluate the performance of the proposed modeling approach, and compare it with other modeling approaches.  相似文献   

19.
Neuro-fuzzy models are being increasingly employed in the domains like weather forecasting, stock market prediction, computational finance, control, planning, physics, economics and management, to name a few. These models enable one to predict system behavior in a more human-like manner than their crisp counterparts. In the present work, an interval type-2 neuro-fuzzy evolutionary subsethood based model has been proposed for its use in finding solutions to some well-known problems reported in the literature such as regression analysis, data mining and research problems relevant to expert and intelligent systems. A novel subsethood based interval type-2 fuzzy inference system, named as Interval Type-2 Subsethood Neural Fuzzy Inference System (IT2SuNFIS) is proposed in the present work. Mathematical modeling and empirical studies clearly bring out the efficacy of this model in a wide variety of practical problems such as Truck backer-upper control, Mackey–Glass time-series prediction, Narazaki–Ralescu and bell function approximation. The simulation results demonstrate intelligent decision making capability of the proposed system based on the available data. The major contribution of this work lies in identifying subsethood as an efficient measure for finding correlation in interval type-2 fuzzy sets and applying this concept to a wide variety of problems pertaining to expert and intelligent systems. Subsethood between two type-2 fuzzy sets is different from the commonly used sup-star methods. In the proposed model, this measure assists in providing better contrast between dissimilar objects. This method, coupled with the uncertainty handling capacity of type-2 fuzzy logic system, results in better trainability and improved performance of the system. The integration of subsethood with type-2 fuzzy logic system is a novel idea with several advantages, which is reported for the first time in this paper.  相似文献   

20.
This paper provided the stability conditions and controller design for a class of structural and mechanical systems represented by Takagi–Sugeno (T–S) fuzzy models. In the design procedure of controller, parallel-distributed compensation (PDC) scheme was utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis was carried out not only for the fuzzy model but also for a real mechanical system. Furthermore, this control problem can be reduced to linear matrix inequalities (LMI) problems by the Schur complements and efficient interior-point algorithms are now available in Matlab toolbox to solve this problem. A simulation example was given to show the feasibility of the proposed fuzzy controller design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号