首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microwave frying of osmotically dehydrated potatoes was optimized by using response surface methodology. Osmotic dehydration was applied prior to microwave frying in order to reduce oil uptake and to evaluate the effect of osmotic dehydration on quality of microwave fried potatoes. Moisture content, oil content, hardness and color of the fried potatoes were used as quality parameters. Microwave power level (400, 550, 700 W), frying time (1.5, 2.0, 2.5 min) and osmotic dehydration time (15, 30, 45 min) were the independent variables in the study. Osmotic dehydration treatment was conducted using 20% (w/w) sodium chloride solution at 30 °C. Moisture content of the fried potatoes decreased whereas oil content, hardness and ΔE value of potatoes increased with increasing frying time and microwave power level. The increase in osmotic dehydration time reduced moisture content and oil content and increased hardness of fried potatoes. The optimum condition was found as frying at 400 W microwave power level for 1.5 min after 39 min of osmotic dehydration time.  相似文献   

2.
The objective of this work was to evaluate the effect of microwave power on acrylamide generation, as well as moisture and oil fluxes and quality attributes of microwave-fried potatoes. Concretely, 25 g of potato strips, in 250 mL of fresh oil (at room temperature), were subjected to three different microwave powers (315, 430, and 600 W) in a conventional microwave oven. Microwave frying resulted in an acrylamide reduction ranged from 37 to 83% compared to deep-oil frying. Microwave-fried French fries presented lower moisture and higher fat content than deep-oil fried potatoes. Concretely, microwave-fried potatoes presented values of moisture and texture more similar to potato chips than French fries, nonetheless with lower fat levels (less than 20 g/100 g wb) and acrylamide content (lower than 100 μg/kg wb) at the reference time. This study presents an alternative way of frying to address the production of healthier potato chips.  相似文献   

3.
The potentiality of high pressure processing (HPP) to possibly enhance diffusion of asparaginase into raw potato sticks, and consequently on reduction of acrylamide levels in fried potatoes was evaluated. Raw potato sticks were immersed in asparaginase (10,000 ASNU/L) and immediately subjected to 0.1, 100, 200 and 400 MPa for 5 min, with total enzymatic reaction times of 5, 10 and 20 min and room temperature. Pressurized raw potato sticks became softer, more flexible, and required lower energy for cutting (up to 47% less); the roughness of potato surface and moisture content were slightly reduced; and the concentration of soluble solids in the exterior solutions increased, indicative of a leaching effect. Due to changes induced by asparaginase and/or HPP on raw potatoes, fried potatoes exhibited higher weight loss after frying, and higher hardness (crispness). The combined treatment with asparaginase and HPP showed to reduce acrylamide levels by 26–47%, while with asparaginase or HPP alone there was no significant reduction.Industrial relevanceHPP is a non-thermal technology that may be used as a pre-treatment for the production of fried potatoes with different/better textural and nutritional properties, as well as to reduce energetic costs of some industrial steps of the production of fried potatoes (for instance, the cutting process and frying time). Also, a combined pre-treatment with HPP and asparaginase may be used as a strategy of acrylamide mitigation in fried potatoes.  相似文献   

4.
The objective of this study was to investigate the possibility of using ultrasound-assisted osmotic dehydration (UAOD) as a pretreatment prior to frying and to study its effects on the quality of fried potatoes. The quality parameters, moisture content, oil uptake, color, texture, and microstructure of fried potatoes, were chosen. Quality of fried potatoes treated with UAOD was also compared with the ones treated with osmotic dehydration (OD). Potato slabs (40 × 40 × 7 mm) were pretreated with different osmotic solutions (15 % sodium chloride and 15 % sodium chloride/50 % sucrose solutions) at different temperatures (25, 45, and 65 °C) with and without ultrasonic waves for different treatment times. The pretreatment conditions which are OD for 90 min and UAOD for 30 min using 15 % sodium chloride/50 % sucrose solution were applied prior to frying at 170 °C for 2, 4, and 6 min. UAOD reduced the oil content of fried potatoes by 12.5 % (db) as compared to untreated fried potatoes at the end of frying. There was no significant difference between OD and UAOD in reduction of oil uptake in fried potatoes. However, UAOD was found to have the advantage of improving the color of French fries. In addition, it shortened the pretreatment time of OD by about 67 %. Cell structure of fried potato was damaged in the presence of pretreatments of OD and UAOD.  相似文献   

5.
ABSTRACT: Potatoes and other foods that have a high content of the amino acid asparagine and a high accumulation of reducing sugars are subject to the formation of acrylamide upon frying. The objectives of this research were (1) to analyze the level of acrylamide formed during deep-fat frying of potato chips and (2) to evaluate means of reducing acrylamide in potato chips by using different potato cultivars and vacuum frying. Several potato cultivars were used in this research, including Innovator (I), NDTX 4930–5W (N), ATX 854 04–8W (ATw), Atlantic (A), Shepody (S), ATX847806–2Ru (ATr), and White-Rose (W). An electric bench-top (atmospheric conditions)-type fryer was used to fry the potatoes. Three temperatures were used: 150 °C, 165 °C, and 180 °C. The vacuum frying experiments were performed at 118 °C, 125 °C, and 140 °C and a vacuum pressure of 10 Torr. The potatoes were sliced (1.5-mm thick) and fried for different lengths of times. For potatoes fried at 165 °C (for 4 min) at atmospheric conditions, the acrylamide contents were 5021 ± 55 ppb (W), 552 ± 25 ppb (I), 358 ± 50 ppb (N), 397 ± 25 ppb (ATw), 646 ± 55 ppb (A), 466 ± 15 ppb(S), and 537 ± 14 ppb (ATr). Vacuum frying reduced acrylamide formation by 94%. Results showed that both cultivar and modified frying systems can play an important role in reducing acrylamide formation in fried potatoes. As the frying temperature decreased from 180 °C to 165 °C, acrylamide content in potato chips reduced by 51% during traditional frying and by 63% as the temperature decreased from 140 °C to 125 °C in vacuum frying. Increased frying time increased acrylamide formation during traditional frying for all temperatures and frying methods analyzed. However, the effect on acrylamide concentration was greater for the traditional frying than the vacuum frying. Keywords: acrylamide, vacuum, frying, potato, temperature  相似文献   

6.
In this study, the effect of microwave pre‐cooking of potato strips on the resultant acrylamide levels in French fries was investigated. Control and microwaved (10, 20, and 30 s at 850 W) samples were fried at 150, 170 and 190 °C for predetermined times. Surface and core temperatures of potato strips were acquired during frying, and acrylamide content in the surface and the core regions were determined separately. The results showed that microwave application prior to frying resulted in a marked reduction of acrylamide level in the surface region, whereas a slight increase was noted for the core region. When the potato strips were subjected to frying after a microwave pre‐cooking step, acrylamide content in the whole potato strip was reduced by 36%, 41%, and 60% for frying at 150, 170, and 190 °C, respectively, in comparison to the control. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Isil Barutcu  Gulum Sumnu 《LWT》2009,42(1):17-652
Acrylamide, a probable human carcinogen, is found to be formed in a wide range of fried foods. In this study, the effects of microwave frying on acrylamide formation in the coating part of chicken were investigated. It was also aimed to determine the effects of various flour types (soy, chickpea and rice flour) in batter formulations on the acrylamide formation and on the color of fried chicken. Usage of all flour types except soy flour resulted in approximately the same moisture content and color development after 1.5 min of microwave frying. Acrylamide contents of batter parts of 1.5 min microwave fried samples having different flours were similar. Microwave frying provided lower acrylamide content and lighter color as compared to those fried conventionally for 5 min for all types of flours. This reduction in acrylamide level was the highest (34.5%) for rice flour containing batter.  相似文献   

8.
Potato tubers were irradiated in 60Co gamma station at different doses in order to investigate the effect of gamma irradiation on acrylamide formation in fried potato strips. Acrylamide content due to the irradiation treatment was reduced by 20–54% compared to a control after frying the irradiated tubers. While apply a blanching process, using warm tap water, to potato strips before frying has decreased acrylamide by 61%. A combination of gamma irradiation and a blanching process, which was applied in this work, showed a maximum decrease in acrylamide formation to reach 78% in fried potatoes.  相似文献   

9.
Acrylamide is considered a carcinogen in animals and a possible carcinogen in humans. It has been found in starch‐rich foods cooked at high temperatures. Vacuum frying (10 Torr) was investigated as a possible alternative to reduce acrylamide formation in potato chips. The cultivar Atlantic was used to determine the kinetics of acrylamide formation during traditional and vacuum frying at different temperatures. There was a 94% decrease in acrylamide content when potatoes were fried to the same final moisture content (1.5% ± 0.3% w.b.) under vacuum compared to those fried under atmospheric conditions. Acrylamide accumulation under vacuum frying was modeled using first‐order kinetics (during traditional frying, the logistic kinetic model was used). The behavior of the kinetics of acrylamide content in potato chips fried under the two processes was different mainly because of the different temperatures used. During traditional frying, higher temperatures are used (150 to 180C) and acrylamide after some time is produced but starts degrading, producing a constant level of acrylamide content at longer times. During vacuum frying (10 Torr), acrylamide increased exponentially (but at lower levels) for all frying times.  相似文献   

10.
This preliminary study aimed to compare the application of pulsed electric field (PEF) with a traditional blanching as pre-treatments before frying for the mitigation of acrylamide content in potato crisps.Measuring the degree of cell disintegration index (po) and the changes in water electrical conductivity during washing of potato slices, PEF protocol and sample preparation scheme were optimized. Peeled potato slices (thickness 1.5 ± 0.2 mm) were subjected to PEF (1.5 kV/cm, pulse duration 10 μs, total treatment time 10 ms, pulse frequency 100 Hz) and to blanching (85 °C for 3.5 min) pre-treatments and then to washing in water, evaluating the reduction of acrylamide precursors (reducing sugars and free asparagine). After frying (175 °C, 3 min), product quality, in terms of colour, texture and acrylamide content were evaluated. Results showed that PEF promoted acrylamide precursors leaching followed by a reduction of the final acrylamide content of around 30%, significantly higher if compared to the reduction obtained with blanching, with only slight modifications of the final quality of the product, in terms of colour and texture.Industrial relevanceThe Commission Regulation (EU) 2017/2158 of 20 November 2017 has introduced new benchmark levels and mitigation strategies for the reduction of the presence of acrylamide in foods, directing food businesses to the research of measures to lower the acrylamide formation in foods. The actual industrial production process of fried potato crisps involves the use of many mitigation strategies, such as a blanching of raw potatoes. However, the traditional blanching treatment presents several practical drawbacks and leads to undesirable changes of the product quality. The application of PEF as a pre-treatment could reduce the acrylamide content in deep-fat fried potato crisps. This preliminary study gives important indications regarding the possibility of combining a PEF pre-treatment on raw potato slices with subsequent industrial processing steps for the production of potato crisps with low acrylamide concentration.  相似文献   

11.
This paper investigated the effect of air‐frying technology, in combination with a pretreatment based of soaking the samples in different chemical agent solutions (citric acid, glycine, calcium lactate, sodium chloride, or nicotinic acid [vitamin B3]), on the generation of acrylamide in fried potatoes. The influence of reducing sugars on the development of surface's color was also analyzed. The experiments were conducted at 180 °C by means of air‐frying and deep‐oil‐frying, as a reference technology. Based on the evolution of color crust with frying time, it could be concluded that the rate of Maillard reaction decreased as the initial reducing sugars content increased in the raw material, and was also lower for deep‐oil‐frying than for air‐frying regardless of pretreatments applied. Air‐frying reduced acrylamide content by about 90% compared with conventional deep‐oil‐frying without being necessary the application of a pretreatment. However, deep‐oil fried potatoes pretreated with solutions of nicotinic acid, citric acid, glycine at 1%, and NaCl at 2% presented much lower acrylamide levels (up to 80% to 90% reduction) than nonpretreated samples.  相似文献   

12.
Acrylamide formation in French fries was investigated in relation to blanching and asparaginase soaking treatments before final frying. Par-fried potatoes of Bintje variety were prepared by cutting strips (0.8 × 0.8 × 5 cm) which were blanched at 75 °C for 10 min. Unblanched strips were used as the control. Control or blanched strips were then dried at 85 °C for 10 min and immediately partially fried at 175 °C for 1 min. Finally, frozen par-fried potatoes were fried at 175 °C for 3 min to obtain French fries. Pre-drying of raw or blanched potato strips did not generate acrylamide formation as expected. Partial frying of pre-dried control potato strips generated 370 μg/kg of acrylamide and the final frying determined French fries with 2075 μg/kg of acrylamide. When control potato strips were treated with a 10000 ASNU/l asparaginase solution at 40 °C for 20 min, the acrylamide formation in French fries was reduced by 30%. When blanched potato strips were treated in the same way, the produced French fries have 60% less acrylamide content than blanched strips without the enzyme treatment. Soaking of blanched potato strips (75 °C, 10 min) in an 10000 ASNU/l asparaginase solution at 40 °C for 20 min is an effective way to reduce acrylamide formation after frying by reducing the amount of one of its important precursors such as asparagine.  相似文献   

13.
不同马铃薯品种对鲜切油炸薯片中丙烯酰胺的影响   总被引:1,自引:0,他引:1  
研究11个不同马铃薯品种,在相同的油炸条件下进行鲜切油炸薯片实验,采用液相-质谱联用检测其不同品种鲜切油炸薯片的丙烯酰胺含量,结合品种的还原糖含量,对丙烯酰胺含量进行分析。方法:热烫60s,表面干燥,180℃油炸100s,脱油,样品预处理,待测。结果:在相同油炸实验的基础上,检测出丙烯酰胺含量较低的是D519、陇薯3号、中薯7号、LK99等;丙烯酰胺含量较高的是中薯8号、夏波蒂、中薯3号等,并且丙烯酰胺含量与品种的还原糖含量走向基本相似。  相似文献   

14.
The effect of frying time on quality and acrylamide (AA) content of French fried potatoes, obtained simulating home-cooking practices, was studied in order to investigate the optimal conditions to minimize the amount of produced toxicant together with the maintenance of good culinary quality. French fries were obtained from fresh potatoes using a domestic fryer with static basket; a 4:1 oil:product ratio and a fixed initial oil temperature of 180 °C were used. Several batches were fried at different times (3, 4, 5, 6, 7, 8, 9 min). During frying tests the oil, the sticks surface and core temperatures were measured by thermocouples. Analysis of water removal, oil uptake, colour, texture and AA content were carried out on fried final products. AA content increased exponentially increasing the frying time. In our working conditions after around 4 min of frying, when the temperature of potato surface and the oil bath reached, respectively, 120 and 140 °C, the increase of time became a key factor in terms of the quantity of AA and its formation rate. On the basis of colour, oil content and AA level the best culinary product was obtained after 5 min of frying.  相似文献   

15.
油炸马铃薯片中丙烯酰胺形成的影响因素的研究   总被引:5,自引:0,他引:5  
丙烯酰胺是富含碳水化合物和氨基酸的食品经高温加热发生美拉德反应而产生的,但有关影响丙烯酰胺形成因素的研究却较少。探讨了油炸温度、原料中还原糖和氨基酸含量、鲜薯切片浸泡液的柠檬酸浓度、油炸前薯片的水分含量及抗氧化剂和油的使用时间对丙烯酰胺形成的影响。结果表明:原料中还原糖和氨基酸含量越高,产品中生成的丙烯酰胺就越多;油炸温度越高,产品中丙烯酰胺含量也相应越高;浸泡液柠檬酸浓度越大,产品中丙烯酰胺含量越低;而随着半成品中含水量的降低,产品中的丙烯酰胺含量也逐渐减少;在油中添加不同浓度的BHT和TBHQ以及采用使用时间不同的油,对加工出来的薯片之间丙烯酰胺含量没有显著的影响。  相似文献   

16.
Reduction of acrylamide formation in potato slices during frying   总被引:1,自引:0,他引:1  
Franco Pedreschi  Karl Kaack 《LWT》2004,37(6):679-685
Reduction of acrylamide formation in potato chips was investigated in relation to frying temperature and three treatments before frying. Potato slices (Tivoli variety, diameter: 37 mm, width: 2.2 mm) were fried at 150°C, 170°C and 190°C until reaching moisture contents of ∼1.7 g water/100 g (total basis). Prior to frying, potato slices were treated in one of the following ways: (i) soaked in distilled water for 0 min (control), 40 min and 90 min; (ii) blanched in hot water at six different time-temperature combinations (50°C for 30 and 70 min; 70°C for 8 and 40 min; 90°C for 2 and 9 min); (iii) immersed in citric acid solutions of different concentrations (10 and 20 g/l) for half an hour. Glucose and asparagine concentration was determined in potato slices before frying, whereas acrylamide content was determined in the resultant fried potato chips. Glucose content decreased in ∼32% in potato slices soaked 90 min in distilled water. Soaked slices showed on average a reduction of acrylamide formation of 27%, 38% and 20% at 150°C, 170°C and 190°C, respectively, when they were compared against the control. Blanching reduced on average 76% and 68% of the glucose and asparagine content compared to the control. Potato slices blanched at 50°C for 70 min surprisingly had a very low acrylamide content (28 μm/kg) even when they were fried at 190°C. Potato immersion in citric acid solutions of 10 and 20 g/l reduced acrylamide formation by almost 70% for slices fried at 150°C. For the three pre-treatments studied, acrylamide formation increased dramatically as the frying temperature increased from 150°C to 190°C.  相似文献   

17.
ABSTRACT:  The effect of cooking method (baking compared with frying) on acrylamide level of potato chips was investigated in this study. Baking and frying experiments were conducted at 170, 180, and 190 °C using potato slices with a thickness of 1.4 mm. Raw potatoes were analyzed for reducing sugars and asparagine. Surface and internal temperatures of potato slices were monitored during the experiments to better explain the results. Fried and baked chips were analyzed for acrylamide content using an LC-MS method. The results showed that acrylamide level of potato chips prepared by frying increased with frying temperature (19.6 ng/g at 170 °C, 39 ng/g at 180 °C, and 95 ng/g at 190 °C). In baking, however, the highest acrylamide level was observed in potato chips prepared at 170 °C (47.8 ng/g at 170 °C, 19.3 ng/g at 180 °C, and 29.7 ng/g at 190 °C). The results showed that baking at 170 °C more than doubled the acrylamide amount that formed upon frying at the same temperature, whereas at 180 and 190 °C, the acrylamide levels of chips prepared by baking were lower than their fried counterparts.  相似文献   

18.
Texture of potatoes with different shapes (slices and strips) were evaluated after frying and in some cases after baking. Blanched and unblanched potato slices (Bintje variety) were fried at four oil temperatures: 160, 170, 180 and 190C until reaching a moisture content of ∼1.7%. A puncture test with three point support for the slices was applied to measure the texture of potato chips using the following parameters extracted from the force versus distance curves: maximum force of break (MFB) and deformation of break (DB). These two parameters were useful to follow the changes in texture of the fried slices with moisture content at different frying temperatures. Blanched and unblanched potato strips were partially fried at 160C and 190C for 60, 90 and 120 s. The par-fried potatoes were frozen at -20C for one day after which they were baked at 200C for 15 min. The texture of the baked potato strips was evaluated using a bending test with two support points. From the force versus distance curves, two parameters were extracted: maximum force of deformation (MFD) and maximum deformation (MD). Significant higher MFB and lower DB values (P > 0.1) for unblanched fried slices indicate that these are crispier than blanched chips for moisture contents lower than 4% (6.59 N and 0.62 mm vs 5.74 N and vs 0.75 mm for unblanched and blanched chips, respectively, average values for the four frying temperatures employed). There was no effect of the frying temperature and the pretreatment (blanching or unblanching) on the texture of the frozen par-fried potatoes after baking when compared at the same residual moisture content, but blanched potato strips lost moisture more slowly both in frying and in baking.  相似文献   

19.
In this research acrylamide reduction in potato chips was investigated in relation to blanching and asparaginase immersion treatments before final frying. Potatoes slices (Verdi variety, diameter: 40 mm, thickness: 2.0 mm) were fried at 170 °C for 5 min (final moisture content of ∼2.0 g/100 g). Prior to frying, potato slices were treated in one of the following ways: (i) Rinsing in distilled water (control I); (ii) Rinsing in distilled water plus blanching in hot water at 85 °C for 3.5 min; (iii) Rinsing in distilled water plus immersion in an asparaginase solution (10000 ASNU/L) at 50 °C for 20 min; (iv) Rinsing in distilled water plus blanching in hot water at 85 °C for 3.5 min plus immersion in an asparaginase solution (10000 ASNU/L) at 50 °C for 20 min; (v) Rinsing in distilled water plus blanching in hot water at 85 °C for 3.5 min plus immersion in distilled water at 50 °C for 20 min (control II). Blanching in hot water (ii) was almost as effective as asparaginase potato immersion (iii) in order to diminish acrylamide formation in potato chips (acrylamide reduction was ∼17% of the initial acrylamide concentration). When potato slices were blanched before asparaginase immersion, the acrylamide content of the resultant potato chips was reduced considerably by almost 90%. We have demonstrated that blanching of potato slices plus asparaginase treatment is an effective combination for acrylamide mitigation during frying. It seems to be that blanching provokes changes in the microstructure of potato tissue leading to an easier and more effective diffusion of asparaginase.  相似文献   

20.
This paper reports the results of a preliminary study on the characterization of parameters influencing formation of acrylamide in fried potatoes, from biological cultivation. The formation of acrylamide was investigated in relation to frying in biological extra virgin olive oil and commercial seed oil. Three different cultivars (Rossa di Colfiorito, Quarantina bianca genovese and Kennebec) were chosen. Asparagine, glucose, fructose and sucrose concentrations were determined in potato slice before frying, while acrylamide content was analysed by LC–ESI-MS/MS in the slices fried in seed and extra virgin olive oil. The Kennebec cultivar showed differences in its potential for acrylamide formation, which was primarily related to its relatively high asparagine and reducing sugars contents, respect the other local cultivars (particulary Quarantina). Values of acrylamide below detection limit (LOD) were found in Quarantina bianca genovese cultivar samples fried in extra virgin olive oil and peanuts seed oil and higher in peanuts seed oil fried potatoes of Kennebec cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号