首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文采用30 keV的He离子辐照Hastelloy N合金,辐照温度为500C,剂量分别为:1×1015、×1015、1×1016He+/cm2。利用扫描电子显微镜(SEM)研究了辐照后块体样品的表面形貌。结果表明,辐照后的块体样品均观察到了表面起泡现象。利用透射电子显微镜(TEM)研究了辐照后TEM样品微结构的变化。结果表明,低剂量(1×1015 He+/cm2)辐照的样品中出现了黑斑缺陷;随着辐照剂量的增加,开始出现位错环及纳米级的氦泡,同时黑斑密度减少;当剂量增至1×1016He+/cm2,位错环以及氦泡的尺寸和密度明显增大,晶界处氦泡更加密集。  相似文献   

2.
采用500 keV的He离子在750 ℃下对GH3535合金样品进行辐照,然后利用掠入射X射线衍射(GIXRD)、透射电子显微镜(TEM)和纳米压痕仪分别对样品的氦泡和位错环辐照缺陷的演化及纳米硬度的变化进行了研究。结果表明,GH3535合金晶格辐照后发生了轻微畸变;离子辐照在样品中形成了大量尺寸为2~5 nm的氦泡和位错环。辐照产生的氦泡和位错环等缺陷在基体中钉扎位错,从而使材料产生了辐照硬化现象,样品硬度随辐照剂量的增加而增大。当辐照剂量达2×1016 cm-2时,辐照样品发生了明显的硬化饱和现象,利用Nix Gao模型计算得此时的硬化程度为64%。  相似文献   

3.
《核技术》2015,(11)
钨和钼材料具有高熔点、高热导率、低溅射率等优点成为国际热核实验反应堆计划中面向等离子体材料的候选材料。因此研究钨和钼材料的辐照损伤行为对于认识面向等离子体材料的辐照损伤机制具有重要意义。本文采用120 e V的He+在873 K对钨和钼材料进行辐照实验,利用纳米压痕仪与导电模式原子力显微镜(Conductive Atomic Force Microscopy,CAFM)相结合,原位比较了钨和钼材料在辐照前后的表面形貌、表面微结构以及表层缺陷分布的变化特征。结果表明,低能He+辐照会导致钨和钼材料的近表面产生纳米量级氦泡缺陷,这些氦泡缺陷的存在使得样品表面产生绒毛或波浪状结构。纳米压痕深度分析和扫描电镜的分析结果表明,低能He+辐照会对Mo材料产生明显的刻蚀作用。本工作对于进一步认识低能氦离子辐照对面向等离子体材料的辐照损伤作用具有一定的科学参考意义。  相似文献   

4.
采用500 keV的He离子在750℃下对GH3535合金样品进行辐照,然后利用掠入射X射线衍射(GIXRD)、透射电子显微镜(TEM)和纳米压痕仪分别对样品的氦泡和位错环辐照缺陷的演化及纳米硬度的变化进行了研究。结果表明,GH3535合金晶格辐照后发生了轻微畸变;离子辐照在样品中形成了大量尺寸为2~5 nm的氦泡和位错环。辐照产生的氦泡和位错环等缺陷在基体中钉扎位错,从而使材料产生了辐照硬化现象,样品硬度随辐照剂量的增加而增大。当辐照剂量达2×10~(16) cm~(-2)时,辐照样品发生了明显的硬化饱和现象,利用Nix-Gao模型计算得此时的硬化程度为64%。  相似文献   

5.
利用0.65 MeV的He+离子轰击白云母膜,并在大气环境下用原子力显微镜(AFM)的轻敲模式分析了辐照后的膜表面。实验结果显示,在不同温度下离子诱导的小丘高度在小于1 nm到几nm之间,且室温条件下能诱发小丘生成的He+离子电子能损阈值在0.44 keV/nm以下。此外,升高温度至973 K并在其中选取不同温度进行表面辐照来验证观测到的小丘结构。实验发现,相比于室温,小丘直径和高度的统计分布在更高温度下表现出了更大的歧离。分别利用分析热峰模型和双温热峰模型计算了辐照过程中的核能损与电子能损,并选取了用能损在阈值附近的离子辐照所产生的小丘的实验数据与模拟结果相比较,发现实验结果与双温热峰模型吻合较好。  相似文献   

6.
为研究氦等离子体在钨表面造成的表面纳米结构,利用荷兰基础能源研究所Pilot-PSI直线等离子体发生装置在673 K温度下,对钨材料进行了低能(40 eV)高束流强度(4×1023 m-2•s-1)氦等离子体辐照。实验结果表明,辐照后钨材料表面出现了多种不同形态的纳米结构,表面纳米结构和晶粒的表面法向之间存在明显关联。在表面法向为[111]的晶粒表面出现三角形的纳米结构,在[110]取向的晶粒表面出现条带状的纳米结构,而在[001]取向的晶粒表面没有明显的结构出现。晶粒表面的纳米结构尺寸在50 nm左右,高度起伏在5 nm以下。另外,氦等离子体辐照会造成晶界处的高度差,在25 nm左右。分析推测氦等离子体辐照造成的晶粒表面和晶界的形貌可能是由近表面的气泡所导致的。  相似文献   

7.
利用中国科学院近代物理研究所320 kV高压平台提供的氦离子辐照烧结碳化硅,辐照温度从室温到1 000 ℃,辐照注量为1015~1017 cm-2。辐照完成后,进行退火处理,然后开展透射电子显微镜、拉曼光谱、纳米硬度和热导率测试。研究发现,烧结碳化硅中氦泡形核阈值注量低于单晶碳化硅。同时,氦泡形貌和尺寸与辐照温度、退火温度有关。另外,对辐照产生的晶格缺陷、元素偏析进行了研究。结果表明,辐照产生了大量的缺陷团簇,同时氦泡生长也会发射间隙子,在氦泡周围形成间隙型位错环。在晶界处,容易发生碳原子聚集。辐照导致材料先发生硬化而后发生软化,且热导率降低。  相似文献   

8.
在温度为923 K、氦离子流强为7×10~(21) m~(-2)·s~(-1)的条件下,考察了低能氦离子辐照对钨材料表面结构的影响。采用扫描电子显微镜(Scanning Electron Microscope,SEM)、导电原子力显微镜(Conductive Atomic Force Microscope,CAFM)、称重法、X射线衍射(X-ray Diffraction,XRD)以及电子背散射衍射(Electron Back-Scattered Diffraction,EBSD)对辐照后钨材料的结构演化规律进行了分析。SEM和CAFM的研究表明,在辐照初期样品表面形成了纳米尺寸的氦泡,随着辐照剂量的增加,氦泡的尺寸和密度逐渐增加,最终引起钨表层的剥落。质量损失和溅射产额的分析结果表明,钨材料表层的剥落是钨损伤的主要形式。SEM、XRD和EBSD的分析证实了辐照后钨样品的表面形貌变化与晶体取向之间具有很强的关联性。研究结果表明,相对于(101),氦原子更容易在(111)和(001)等晶面上吸附、扩散和聚集,这些研究结果将为面向等离子体材料的优化设计提供有用的参考。  相似文献   

9.
氦离子辐照非晶态合金的表面损伤研究   总被引:3,自引:0,他引:3  
用扫描电子显微镜研究了室温下氦离子辐照Fe77Ni5B18等 10种非晶态合金的表面形貌。氦离子的能量为 4 0keV和 6 0keV ,总注量为 1.0× 10 18— 4 .0× 10 18He/cm2 。对于不同的注量和不同的材料 ,观察到了层离、发泡、剥落、发泡破裂、二代发泡和多孔结构等多种表面损伤类型。测量了泡的直径和剥落泡皮的厚度 ,并讨论了表面损伤类型和初现的临界注量与材料种类和离子能量的关系。  相似文献   

10.
将工业纯铝抛光后进行He离子注入,注入剂量为3×1020 m-2,注入能量为500 keV。利用SRIM软件模拟预测得离子注入后He原子在距表面1.8 μm处浓度最高。将He离子注入样品,在190 ℃时效192 h,促进氦泡的形成和长大,用透射电子显微镜观测样品深度方向上氦泡的分布。结果显示,距表面约1.8 μm处氦泡密度最大,说明 He原子浓度最高,与SRIM软件模拟预测结果一致。同时发现,晶界处氦泡的尺寸较晶粒内的大,说明晶界有利于氦泡的形成和长大;晶界两侧不同晶粒内氦泡尺寸有较大差异,可能是因为晶粒取向不同造成晶粒中氦泡的形核长大过程不同,说明晶粒取向对氦泡的合并长大行为可能有显著影响。  相似文献   

11.
Changes in sizes and morphology of small cavities in nickel irradiated by 25 keV helium ions and 20 keV deuterons were investigated during irradiation and on annealing after irradiation by means of transmission electron microscopy. In the early stage of He+ irradiations at 600 and 700° C, roundish cubes appeared, gradually changed to octahedra. and, then, by the truncation of apexes, finally reached cubo-octahedra. Nucleation and growth behavior of cubic cavities in D+ irradiated nickel was different from the case of He+ irradiation. On annealing of the He+ irradiated specimen, only octahedral cavities showed marked growth, finally changing to roundish cubes at 750° C. Cavities of roundish cubes and cubo-octahedra did not grow nor change their shapes remarkably by the annealing. The cubic cavities formed by D+ irradiation at 360° C showed gradual shrinkage on annealing at 600° C and disappeared at 625° C. The changes of cavities during irradiation and on annealing were interpreted by the effect of the internal gas pressure.  相似文献   

12.
Helium bubbles were found to be formed in SiC crystals by irradiation with He+ ions at 1000 to 1200° C. The size of bubbles increased with increasing irradiation temperatures.

The density of helium atoms in the bubbles was measured to be about 1028 atoms/m3 by EELS measurement in combination with electron microscopic observation in the same selected areas, and the internal pressure of the bubbles was estimated therefrom to be on the order of 108 Pa at room temperature.  相似文献   


13.
Single crystals of z- and x-cut LiNbO3 were irradiated at room temperature and 15 K using He+- and Ar+-ions with energies of 40 and 350 keV and ion fluences between 5 × 1012 and 5 × 1016 cm−2. The damage formation investigated with Rutherford backscattering spectrometry (RBS) channeling analysis depends on the irradiation temperature as well as the ion species. For instance, He+-irradiation of z-cut material at 300 K provokes complete amorphization at 2.0 dpa (displacements per target atom). In contrast, 0.4 dpa is sufficient to amorphize the LiNbO3 in the case of Ar+-irradiation. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization. To study the etching behavior, 400 nm thick amorphous layers were generated via multiple irradiation with He+- and Ar+-ions of different energies and fluences. Etching was performed in a 3.6% hydrofluoric (HF) solution at 40 °C. Although the etching rate of the perfect crystal is negligible, that of the amorphized regions amounts to 80 nm min−1. The influence of the ion species, the fluence, the irradiation temperature and subsequent thermal treatment on damage and etching of LiNbO3 are discussed.  相似文献   

14.
In this study, we have modeled the sputtering process of energetic He+ ions colliding with W nano-fuzz materials, based on the physical processes, such as the collision and diffusion of energetic particles, sputtering and redeposition. Our modeling shows that the fuzzy nanomaterials with a large surface-to-volume ratio exhibit very high resistance to sputtering under fusion-relevant He+ irradiations, and their sputtering yields are mainly determined by the thickness of fuzzy nano-materials, the reflection coefficients and mean free paths of energetic particles, surface sputtering yields of a flat base material, and the geometry of nano-fuzz. Our measurements have confirmed that the surface sputtering yield of a W nano-fuzz layer with the columnar geometry of nano-fuzz in cross-section is about one magnitude of order lower than the one of smooth W substrates. This work provides a complete model for energetic particles colliding with the nano-fuzz layer and clarifies the fundamental sputtering process occurring in the nano-fuzz layer.  相似文献   

15.
Variation of the ion beam induced charge (IBIC) pulse heights due to ion irradiation was investigated on a Si pn diode and a 6H-SiC Schottky diode using a 2 Mev He+ micro-beam. Each diode was irradiated with a focused 2 MeV He+ micro-beam to a fluence in the range of 1×109–1×1013 ions/cm2. Charge pulse heights were analyzed as a function of the irradiation fluence. After a 2 MeV ion irradiation to the Si pn junction diode, the IBIC pulse height decreased by 15% at 9.2×1012 ions/cm2. For the SiC Schottky diode, with a fluence of 6.5×1012 ions/cm2, the IBIC pulse height decreased by 49%. Our results show that the IBIC method is applicable to evaluate irradiation damage of Si and SiC devices and has revealed differences in the radiation hardness of devices dependent on both structural and material.  相似文献   

16.
In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe+ and 330 keV He+ ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr–2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle–matrix interfaces.  相似文献   

17.
The evolution of damages at a Cu/Al2O3 device interface after Ar+ irradiation, depending on alumina structure, and the effect of surface roughness on sputtering have been studied. A polycrystalline Cu/Al2O3 bilayer and polycrystalline Cu on amorphous alumina were irradiated with 400 keV Ar+ ion beam at doses ranging from 5 × 1016 to 1017 Ar+/cm2 at room temperature. The copper layer thicknesses were between 100 and 200 nm. RBS analysis was used to characterize the interface modification and to deduce the sputtering yield of copper. The SEM technique was used to control the surface topography. A RBS computer simulation program was used to reproduce experimental spectra and to follow the concentration profile evolutions of different elements before and after ion irradiation. A modified TRIM calculation program which takes into account the sputtering yield evolution as well as the concentration variation versus dose gives a satisfactory reproduction of the experimental argon distribution. The surface roughness effect on sputtering and the alumina structure influence at the interface on mixing mechanisms are discussed.  相似文献   

18.
The yields of ions and neutrals backscattered and alkali ions sputtered from LiF crystals by keV He+ ion impact have been measured by means of the coaxial impact collision ion scattering spectroscopy in time of flight analysis mode using the charging-up effect. It is found that as the charging-up potential increases due to continuous irradiation of the pulsed ion beam, the time of flight of the He+ ions backscattered shifts toward the shorter time, while that of the neutrals backscattered shifts toward the longer, and that of Li ions sputtered also shifts much more clearly toward the shorter. The charging-up potential has been estimated as a function of irradiation time of the pulsed ion beam from the time of flight data and the ion to neutral ratio in the backscattering yields is estimated to be about 0.15. The mechanisms for ionization on He and sputtering of alkali ions are discussed in terms of charging-up and trion (bihole and electron) produced by Auger neutralization of keV He+ ions at the target surface.  相似文献   

19.
The O+ desorption from reduced, oxygenated, and ion-bombarded TiO2(1 1 0) surfaces has been investigated during He+ irradiation. The O+ desorption is initiated by creation of an antibonding O 2s core hole state via quasi-resonant charge exchange with the He+ 1s state, followed by the intra-atomic Auger decay of the O 2s hole. Upon oxygenation of the reduced TiO2(1 1 0) surface, the O+ yield increases by one order of magnitude. The O2 molecule is dissociated at the vacancy site of bridging oxygen and the oxygen atoms either fill a vacancy site or chemisorb at a fivefold-coordinated Ti4+ site as an adatom. The latter is detected with much higher efficiency than the former. The O+ yield is increased during He+ bombardment of the reduced TiO2(1 1 0) surface due to formation of lower coordinated oxygen atoms. The oxygen species thus formed by ion bombardment or oxygenation are unstable on the surface and tend to diffuse into bulk vacancy sites or higher coordination surface sites even at room temperature.  相似文献   

20.
Extraordinarily high ion-beam induced electron yields are seen from polycrystalline diamond surfaces for high energy H+, He+ and Ar+ ions. This is attributed to the negative electron affinity of the diamond surface. However, the yield decays rapidly with dose, limiting the potential applications. The mechanism for decay is suggested to be electron-stimulated desorption of surface hydrogen, which removes the negative electron affinity responsible for high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号