首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
The function mechanism of different types of aging precipitates in localized corrosion of Al alloys was studied. The function mechanism of the precipitates of θ (Al2Cu) and η (MgZn2) is validated. The precipitate of θ containing noble element Cu is cathodic to the alloy base, resulting in the anodic dissolution and corrosion of the alloy base at its adjacent periphery. The precipitate of η containing active element Mg is anodic to the alloy base, anodic dissolution and corrosion occur on its surface. Meanwhile, a localized corrosion mechanism conversion associated with the precipitate of T1 (Al2CuLi) is advanced, which contains noble element Cu and active element Li simultaneously. The precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Li and the enrichment of noble element Cu make its potential move to a positive direction. As a result, the corroded T1 precipitate becomes cathodic to the alloy base at a later stage, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.  相似文献   

2.
The corrosion behavior of Ni3Al-based intermetallic alloys in a 0.5 M NaOH solution was studied at 25 °C. The open circuit potential, cathodic and anodic potentiodynamic polarization, Tafel plots and linear polarization resistance measurements were used to characterize the corrosion behavior. For the Ni3Al(B, Zr) alloy, potentiodynamic polarization curves showed a wide passive region that can be found between about ?0.220 VSCE and 0.520 VSCE. On the other hand, a narrow passive region, in the range of potentials from about ?0.180 VSCE to 0.180 VSCE, was observed for the Ni3Al(B, Zr, Cr, Mo) alloy. Chromium, as an alloying element in the Ni3Al(B, Zr, Cr, Mo) alloy, contributes to transpassive dissolution of the passive film at much lower anodic potentials and remarkably reduces the passivation region. The experiments indicated also that damaged passive films on alloys repairs itself and pits do not initiate. The surface of both alloys and passive films possess extremely high corrosion resistance in a studied solution. However, Tafel and linear polarization tests revealed that freshly exposed surfaces of the Ni3Al(B, Zr) alloy exhibited better corrosion resistances than the Ni3Al(B, Zr, Cr, Mo) alloy. Both methods, used for the determination of corrosion rates gave very similar results. The calculated corrosion rates are about 2.8 ·10?3 and 6.0·10?3 mm year?1 for the Ni3Al(B, Zr) alloy and B, respectively.  相似文献   

3.
C.T. Liu 《Corrosion Science》2007,49(5):2198-2209
The potentiodynamic polarization measurement of 254SMO stainless steel (UNS 31254) was conducted in 3.5% NaCl solutions with pH ranging from 0.1 to 5. The results indicated that this stainless steel offered excellent pitting corrosion resistance in corrosive environments. Further, it also exhibited various features on the polarization curves in different pH solutions. The electrochemical constant-potential passivation treatment performed at different pH followed by XPS analysis revealed that the primary constituents of the outermost layer of the passive films formed in the weak (pH 5) and strong (pH 0.8) acid solutions are iron oxides and Cr2O3 and Cr(OH)3, respectively. Molybdenum oxides, primarily in the six-valence state, existed in the outermost layer of the passive film. Only very weak signals corresponding to that of nickel oxides were detected in the film formed in the weak acid (pH 5) solution. The ICP-MS analyses indicated selective dissolution of a significant amount of Fe and a few Mo and Ni ions during the passivation treatment in the strong acid (pH 0.8) solution. No Cr dissolution was observed; this indicated that the Cr in the film is relatively stable. XPS depth profiling results showed that a similar bilayer-structured film was formed in both the solutions (pH 0.8 and 5); the outer layer of this film is primarily composed of Cr(OH)3 and Mo(VI), and the inner layer, Cr2O3 and Mo(IV). The results of the examinations of passive film formations and dissolution by XPS and ICP-MS were consistent with the polarization curves.  相似文献   

4.
We report the preparation of Ni38Mn28Ga34 alloy thin film on GaAs(111) substrates by molecular beam epitaxy. These films with relatively smooth granular surface have hexagonal (NiMn)2Ga structure with ratio c/a = 1.27, showing clear epitaxial relationships with GaAs substrates. The (Ni.Mn)2Ga pseudo-binary alloy is stabilized at 200 °C exhibiting a ferromagnetic behavior and strong anisotropy of magnetization at low temperatures.  相似文献   

5.
Long-term anticorrosion behaviour of polyaniline on mild Steel   总被引:1,自引:0,他引:1  
Y. Chen  J. Li  J.L. Lu  F.S. Wang 《Corrosion Science》2007,49(7):3052-3063
Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 109 Ω·cm2 until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.  相似文献   

6.
《Corrosion Science》1996,38(3):469-485
The corrosion resistance of arc-melted Ni10TaP alloys containing 0, 10 and 20 at% phosphorus in 12 M HCl solution at 30 °C was investigated. The alloys containing 0 and 10 at% phosphorus suffer severe corrosion. The addition of 20 at% phosphorus to crystalline Ni10Ta alloy results in a three-orders-of-magnitude decrease in the corrosion rate. The open circuit potentials of the Ni10Ta alloys containing 0 and 10 at% phosphorus stay almost constant in the active region of nickel, while the open circuit potential of the Ni10Ta20P alloy increases almost linearly in the initial 2 h. The Ni10Ta alloy consists of intermetallic Ni8Ta and immersion in 12 M HCl results in faceting dissolution. Ni10Ta10P alloy is composed of major Ni8Ta and Ni3P phases and minor Ni2Ta and Ni2P phases. Immersion of Ni10Ta10P alloy leads to preferential dissolution of the Ni8Ta phase and to continuous thickening of the corrosion product film consisting mostly of tantalum as cations. Ni 10Ta20P alloy consists of Ni2Ta, Ni3P, Ni2P and NiP phases. Immersion of Ni10Ta20P alloy gives rise to initial increase in elemental phosphorus on the surface as a result of selective dissolution of nickel and selective oxidation of tantalum. The formation of elemental phosphorus with a high cathodic activity is responsible for the initial ennoblement of the open circuit potential and for the formation of the passive film in which tantalum is highly concentrated. The higher corrosion resistance of Ni10Ta20P alloy than Ni10Ta10P alloy is attributable to the formation of the Ni2Ta phase with a higher tantalum content than the Ni8Ta phase which is the readily corroded major intermetallic phase in the Ni10Ta10P alloy.  相似文献   

7.
Selective dissolution of Ni(γ) in a binary Ni(γ)/Ni3Al(γ′) two-phase alloy was performed in an aqueous electrolyte including 1 wt.% (NH4)2SO4 and 1 wt.% citric acid to obtain a rough, γ′-terminated surface. The electrochemical potential for the selective dissolution was determined from the polarization curves of the γ and γ′ single-phase alloys. The selective dissolution tests proved that γ was precisely removed above 1.7 VSCE, resulting in the formation of a rough, γ′-terminated surface. Surface analyses revealed that a passive AlOx, which retarded the dissolution, was preferentially formed on γ′, resulting in a successful selective dissolution.  相似文献   

8.
A novel technique has been developed that enables in situ monitoring of the microstructural wet corrosion mechanisms of zinc–(1–2 wt.% magnesium)–(1–2 wt.% aluminium) galvanising alloys using time lapse optical microscopy. The technique enabled the imaging of the progression of anodic attack, the development of corrosion product rings radially to the anode and pH gradients between anodes and cathodes using an indicator. It was found that corrosion initiated in the binary and ternary eutectic regions within the microstructure of the alloy with preferential de-alloying of MgZn2 lamellae. After eutectic dissolution, anodic attack proceeded on the primary zinc rich dendrites.  相似文献   

9.
The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Znacid) and a cyanide-free alkaline bath (Znalkaline)) and of Zn–Mn and Zn–Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn–Mn(432h) > Zn–Co(429h) > Znalkaline(298h) > Znacid(216h). The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn5(OH)8Cl2·H2O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn0.98O2, Mn5O8) in the Zn–Mn coating, and the formation of the hydroxide Zn2Co3(OH)10·2H2O in the Zn–Co coating, produced more compact and stable passive layers, with lower dissolution rates.  相似文献   

10.
The corrosion behaviour of 2024 aluminium alloy in sulphate solutions was studied; attention was focused on the influence of coarse intermetallic Al2CuMg particles on the corrosion resistance of the alloy. Model alloys representative of the aluminium matrix and of Al2CuMg coarse intermetallics were synthesized by magnetron sputtering. Open-circuit potential measurements, current-potential curve plotting and galvanic coupling tests were performed in sulphate solutions with or without chlorides. Further explanations were deduced from the study of the passive films grown on model alloys in sulphate solutions. The results showed that model alloys are a powerful tool to study the corrosion behaviour of aluminium alloys.  相似文献   

11.
The corrosion behavior of Cu–Al and Cu–Al–Be (0.55–1.0 wt%) shape-memory alloys in 0.5 M H2SO4 solution at 25 °C was studied by means of anodic polarization, cyclic voltammetry, and alternative current impedance measurements. The results of anodic polarization test show that anodic dissolution rates of alloys decreased slightly with increasing the concentrations of aluminum or beryllium. Severe intergranular corrosion of Cu–Al alloy was observed after alternative current impedance measurement performed at the anodic potential of 0.6 V. However, the addition of a small amount of beryllium was effective to prevent the intergranular corrosion. The effect of beryllium addition on the prevention of intergranular corrosion is possibly attributed to the diffusion of beryllium atoms into grain boundaries, which in turn deactivates the grain boundaries.  相似文献   

12.
Nanocrystalline materials are claimed to exhibit improved properties as a result of their novel microstructure. The corrosion behavior of nanocrystalline (Ni70Mo30)90B10 alloys prepared by crystallization from the amorphous state was studied and compared with that of their amorphous and coarse-grained counterparts. Special emphasis was given to the relationship between microstructure and corrosion resistance. It was concluded that nanocrystalline (Ni70Mo30)90B10 alloys are less sensitive to corrosion in alkaline solutions than the coarse-grained material. This behavior was related to their small grain size and homogeneous single phase microstructure. They provide a uniform substrate where it is easy to form a passive film, consisting essentially of Ni(OH)2 for the alloy studied.  相似文献   

13.
A bright nickel was passivated in the pH 8·39 boric acid-borate buffer solution. The oxide formation reactions were mainly investigated by means of polarization experiments, alternating anodic and cathodic polarization, potential decay experiments and colorimetric analysis. From the results, the chemical composition and structure of passive films formed on nickel were discussed. The experimental results are summarized as follows.1. A considerable amount of nickel ions dissolved during the anodic formation of passive films. The dissolution ceased because of the formation of NiO2. 2. The passive films on bright nickel has a duplex structure consisting of NiO and Ni3O4. At higher potentials, NiO2 was produced on them. NiO and Ni3O4 were formed directly from Ni, and NiO2 was transformed from Ni3O4. 3. NiO and NiO2 were reversibly produced and reduced, but Ni3O4 was very difficult to be reduced. 4. It was observed that there was a reversible charging and discharging layer at the potential where Ni3O4 formed. The electric capacity was calculated to be about 100 μF/cm2, assuming that roughness factor was 2. It would be reasonable to think that a space charge was established on nickel surface.  相似文献   

14.
The corrosion performance of the slurry Si-modified aluminide coating on the nickel base superalloy In-738LC exposed to low temperature hot corrosion condition has been investigated in Na2SO4-20 wt.% NaCl melt at 750 °C by combined use of the anodic polarization and characterization techniques.The coated specimen showed a passive behavior up to −0.460 V vs. Ag/AgCl (0.1 mol fraction) reference electrode, followed by a rapid increase in anodic current due to localized attack in the higher potential region. In the passive region, the anodic dissolution of constituents of the coating occurred through the passive film, probably SiO2, at slow rate of 20-30 μA/cm2. The passive current for the Si-modified coating was two orders of magnitude smaller than that for bare In-738LC, which is known as Cr2O3 former in this melt. This indicates that the SiO2 film is chemically more stable than Cr2O3 film under this condition. However, pitting-like corrosion commenced around −0.460 V and proceeded at the high rate of 100 mA/cm2 in the higher potential region than +0.400 V. The corrosion products formed on the coating polarized in different anodic potentials were characterized by SEM, EDS and XRD. It was found from the characterization that oxidation was dominant attack mode and no considerable sulfidation occurred at 750 °C. The SiO2 oxide was not characterized in the passive region because the thickness of the passive film was extremely thin, but was detected as the primary oxide in the localized corrosion region, where the selective oxidation of Al was observed by further progress of the corrosion attack front into the inner layer of coating.  相似文献   

15.
The corrosion resistance of fully crystalline CrB2 coatings magnetron sputtered onto AISI 316L stainless steel was tested in acidic solutions. CrB2 coatings showed excellent corrosion protection, but suffered a breakdown when an anodic potential of greater than about +1 V (SHE) was applied to the surface in a 1 M HCl electrolyte. The coating failure at high potentials is attributed to transpassive dissolution of the coating at volume defects, enabling the electrolyte to reach the underlying 316L substrate, resulting in its rapid corrosion and subsequent fracturing of the coating. Electrochemical data and potential-pH (Pourbaix) diagrams, constructed from thermodynamic data, indicate that the corrosion resistance of CrB2 is due to the formation of a Cr(III) oxide passive film in the absence of activation corrosion.  相似文献   

16.
A new Ce, Zr and Nb-based conversion coating was designed for AZ91 and AM50 magnesium alloys. The corrosion protection provided by this coating was evaluated by electrochemical measurements (polarization curves, electrochemical impedance spectroscopy) in Na2SO4 electrolyte, and accelerated atmospheric corrosion tests (humid, SO2 polluted air, and salt spray). Its chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). Electrochemical measurements showed that Mg alloys treated during 24 h in the Ce-Zr-Nb conversion bath exhibit: (i) increased corrosion potential, (ii) decreased corrosion and anodic dissolution current densities, and (iii) increased polarization and charge transfer resistances. The accelerated corrosion tests revealed excellent atmospheric corrosion resistance for all Ce-Zr-Nb-treated samples, with or without an additional layer of epoxy-polyamide resin lacquer or paint. XPS analysis showed that the coating includes CeO2, Ce2O3, ZrO2, Nb2O5, MgO, and MgF2 as main components. No significant modification of the chemical composition was observed after cathodic and anodic polarization in Na2SO4. This new coating provides improved corrosion resistance, and excellent paint adhesion. It offers an alternative to the chromate conversion coating for magnesium alloys.  相似文献   

17.
Anodic oxidation of copper, nickel and two copper-nickel alloys was studied in cryolite melts at 1000 °C. In an oxide-free melt, anodic dissolution of each material was observed, and the dissolution potential increases with the content of copper. SEM characterization of a Cu55-Ni45 alloy showed that nickel is selectively dissolved according to a de-alloying process. In an alumina-containing melt, a partial passivation occurs at the copper-containing electrodes, at potentials below the oxygen evolution potential. A passive film forms on the copper electrode, while on the nickel electrode no dense oxide layer develops. Copper-nickel alloys were found to form a mixed oxide layer. At higher potentials, the formation of oxygen bubbles on the electrodes results in a degradation of the passive films and a strong corrosion.  相似文献   

18.
Simulation experiments using oxide thin films with analogues composition and thickness of passive films on Fe-Cr alloys have been performed to reveal the function of alloying elements in passive films. The objective of the present paper is to review recent results of the simulation experiments using Fe2O3-Cr2O3 films. The thinning rate of the films was measured as a function of potential in 1 M HCl by in-situ ellipsometry. The potential-dependent change of the rate well simulated the potential-dependent dissolution behavior of Fe-Cr alloys. The composition of the films having resistance against given environment was obtained by the simulation experiments.  相似文献   

19.
The anodic dissolution and passivation of tin, indium and tin–indium alloys were studied in 0.5 M solutions of both malic and citric acids, using potentiodynamic technique and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The E/I curves showed that the anodic behavior of all investigated electrodes exhibits active/passive transition. The active region of tin involves two anodic peaks (I and II) prior to the passive region in both the investigated acids, while indium exhibits two peaks (I and II) in malic and one peak in citric acid. These two peaks (I and II) correspond to the formation of InOOH and In(OH)3/In2O3 system, respectively, but that observed peak in citric acid is to InOOH. The active region for tin–indium alloys (I, II and III) in citric acid showed one peak (I) and shoulders (II). This shoulder predominates with increasing temperature due to little In2O3 formation and its dissolution at higher temperatures. The disappearance of this shoulder for the alloys (IV and V) with high indium percent may be due to the formation of large amounts of In2O3 with tin oxides on the surface.  相似文献   

20.
Microstructure, martensitic transformation behavior, mechanical and shape memory properties of Ni56-x Mn25 Fex Ga19(x = 0, 2, 4, 6, 8) shape memory alloys were investigated using optical microscopy(OM), X-ray diffraction analysis(XRD), differential scanning calorimeter(DSC), and compressive test. It is found that these alloys are composed of single non-modulated martensite phase with tetragonal structure at room temperature, which means substituting Fe for Ni in Ni56 Mn25 Ga19 alloy has no effect on phase structure. These alloys all exhibit a thermoelastic martensitic transformation between the cubic parent phase and the tetragonal martensite phase. With the increase of Fe content, the martensitic transformation peak temperature(Mp) decreases from 356 °C for x = 0 to 20 °C for x = 8, which is contributed to the depressed electron concentration and tetragonality of martensite. Fe addition remarkably reduces the transformation hysteresis of Ni–Mn–Ga alloys. Substituting Fe for Ni in Ni56 Mn25 Ga19 alloy can decrease the strength of the alloys and almost has no influence on the ductility and shape memory property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号