首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
先进天基太阳天文台(ASO-S)卫星的3大载荷之一硬X射线成像仪(Hard X-ray Imager, HXI)是一套基于傅立叶变换调制成像技术的望远镜.它利用91组不同摆放角和节距的光栅子准直器排列摆布,获得45个基于空间调制的傅立叶变换对,重建太阳耀斑源30–200 keV的硬X射线像,最高分辨率可达3.1′′.在光栅节距已经确定的前提下,它的摆放角分布仍会影响成像质量.通过对HXI仪器傅立叶分量μν分布与点扩散函数(PSF)的空间演化关系分析研究,寻求HXI光栅摆放角的最优分布.其结果将作为改进HXI仪器设计和开发相应科学分析软件的依据.  相似文献   

2.
ASO-S卫星HXI量能器探测单元的标定   总被引:1,自引:0,他引:1       下载免费PDF全文
先进天基太阳天文台卫星(Advanced Space-based Solar Observatory, ASO-S)是中国科学院第2批空间科学先导专项之一,其主要目标是同时观测太阳磁场、耀斑和日冕物质抛射,并对3者之间的相互关系和内在联系进行研究.硬X射线成像仪(HXI)是ASOS卫星的3大载荷之一,它通过对太阳活动发射的硬X射线进行傅里叶调制成像,实现高空间分辨率和高时间分辨率的太阳能谱成像观测.量能器单机是HXI的关键单机之一,其主要任务是精准测量通过每对光栅后太阳硬X射线的能量和通量.主要介绍了量能器单机的工作原理及其关键指标要求、标定设备及标定方案,最后给出了标定结果,从而验证了量能器单机方案设计的合理性.  相似文献   

3.
先进天基太阳天文台(ASO-S)是中国科学院空间科学先导专项2期规划的太阳观测卫星,其针对第25个太阳活动峰年,同时观测太阳磁场、日冕物质抛射和太阳耀斑爆发.硬X射线成像仪(HXI)作为该卫星3个科学载荷之一,实现了高时间分辨率和空间分辨率的太阳硬X射线成像观测,其量能器由99套溴化镧闪烁晶体-光电倍增管探测单元和读出电子学板构成,实现了30–200 keV的硬X射线光子能谱测量.针对HXI量能器的观测需求,设计了一套空间高事例率读出电子学系统,并通过实验室测试,证明了该系统单事例读出死时间小于2μs,同时验证了该系统电子学噪声小于120 fC,积分非线性小于2%,满足HXI仪器要求.  相似文献   

4.
China's first solar mission, the Advanced Space-based Solar Observatory(ASO-S), is now changing from Phase B to Phase C. Its main scientific objectives are summarized as '1M2B', namely magnetic field and two types of bursts(solar flares and coronal mass ejections). Among the three scientific payloads,Hard X-ray Imager(HXI) observes images and spectra of X-ray bursts in solar flares. In this paper, we briefly report on the progresses made by the HXI science team(data and software team) during the design phase(till May 2019). These include simulations of HXI imaging, optimization of HXI grids, development of imaging algorithms, estimation of orbital background, as well as in-orbit calibration plan. These efforts provided guidance for the engineering, improved HXI's imaging capability and reduced the cost of the instrument.  相似文献   

5.
喻福  苏杨  张哲  黄宇 《天文学报》2020,61(4):40
硬X射线成像是研究太阳耀斑等爆发现象的重要手段.由于采用调制成像而非直接成像的原因, X射线图像在日面上的位置需要借助太阳指向镜提供的仪器指向的日面坐标来确定.因此,指向信息对于耀斑定位实现多波段研究,理解太阳耀斑的物理过程具有重要的科学意义.在此对两种太阳指向镜指向信息的获取算法进行了测试.结合太阳指向镜的设计方案,首先利用SDO (Solar Dynamics Observatory)/AIA (Atmospheric Imaging Assembly) 4500?的数据产生测试图像,其次对其进行二值化处理,分别提取日面轮廓和4个边角指定区域面积;最后分别利用最小二乘法和四象限法对太阳中心坐标进行反演.初步结果显示最小二乘法受随机噪声影响小,定位精度相对稳定约为0.25′′,并可提供四象限法解算的初值;后者的精度可以优于0.14′′,但受随机噪声影响较大.两种算法的精度都显著优于硬X射线成像仪(Hard X-ray Imager, HXI)太阳指向镜的设计要求,可为指向数据在将来科学分析中的实际应用提供参考.  相似文献   

6.
A space-borne hard X-ray collimator, comprising 91 pairs of grids, has been developed for the Hard X-ray Imager(HXI). The HXI is one of the three scientific instruments onboard the first Chinese solar mission: the Advanced Space-based Solar Observatory(ASO-S). The HXI collimator(HXI-C) is a spatial modulation X-ray telescope designed to observe hard X-rays emitted by energetic electrons in solar flares.This paper presents the detailed design of the HXI-C for the qualification model that will be inherited by the flight model. Series tests on the HXI-C qualification model are reported to verify the ability of the HXI-C to survive the launch and to operate normally in on-orbit environments. Furthermore, results of the X-ray beam test for the HXI-C are presented to indirectly identify the working performance of the HXI-C.  相似文献   

7.
We have recently built and tested an instrument designed to measure the polarization of the hard (5–30 keV) X-ray emission from solar flares, and thereby to investigate the energy release mechanism and constrain flare models. In particular, these measurements will help to determine whether hard X-ray bursts are produced by nonthermal or by thermal electrons. The polarimeter makes use of the angular dependence of Thomson scattering from targets of metallic lithium. It has an energy resolution of a few keV, a time resolution of 5 s, and sufficient sensitivity to measure polarization levels (3) of a few percent in about 10 s for a moderate strength solar flare. The instrumental polarization has been directly measured and found to be within the design goal of 1%. This polarimeter is scheduled to be flown as part of the OSS-1 pallet on an early Space Shuttle mission.  相似文献   

8.
9.
Spectroscopic observation of solar flares in the hard X-ray energy range, particularly the 20 ∼ 100 keV region, is an invaluable tool for investigating the flare mechanism. This paper describes the design and performance of a balloon-borne hard X-ray spectrometer using CdTe detectors developed for solar flare observation. The instrument is a small balloon payload (gondola weight 70 kg) with sixteen 10×10×0.5 mm CdTe detectors, designed for a 1-day flight at 41 km altitude. It observes in an energy range of 20−120 keV and has an energy resolution of 3 keV at 60 keV. The second flight on 24 May 2002 succeeded in observing a class M1.1 flare.  相似文献   

10.
High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the difffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.  相似文献   

11.
12.
Hurford  G.J.  Schmahl  E.J.  Schwartz  R.A.  Conway  A.J.  Aschwanden  M.J.  Csillaghy  A.  Dennis  B.R.  Johns-Krull  C.  Krucker  S.  Lin  R.P.  McTiernan  J.  Metcalf  T.R.  Sato  J.  Smith  D.M. 《Solar physics》2002,210(1-2):61-86
The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) observes solar hard X-rays and gamma-rays from 3 keV to 17 MeV with spatial resolution as high as 2.3 arc sec. Instead of focusing optics, imaging is based on nine rotating modulation collimators that time-modulate the incident flux as the spacecraft rotates. Starting from the arrival time of individual photons, ground-based software then uses the modulated signals to reconstruct images of the source. The purpose of this paper is to convey both an intuitive feel and the mathematical basis for this imaging process. Following a review of the relevant hardware, the imaging principles and the basic back-projection method are described, along with their relation to Fourier transforms. Several specific algorithms (Clean, MEM, Pixons and Forward-Fitting) applicable to RHESSI imaging are briefly described. The characteristic strengths and weaknesses of this type of imaging are summarized.  相似文献   

13.
The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8–15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.  相似文献   

14.
The SMall Explorer for Solar Eruptions (SMESE) is a small satellite being developed jointly by China and France. It is planed to launch around the next solar maximum year (∼ 2011) for observing simultaneously the two most violent types of eruptive events on the sun (the coronal mass ejection (CME) and the solar flare) and investigating their relationship. As one of the 3 main payloads of the small satellite, the high energy burst spectrometer (HEBS) adopts the upto- date high-resolution LaBr3 scintillation detector to observe the high-energy solar radiation in the range 10 keV—600 MeV. Its energy resolution is better than 3.0% at 662 keV, 2-fold higher than that of current scintillation detectors, promising a breakthrough in the studies of energy release in solar flares and CMEs, particle acceleration and the relationship between solar flares and CMEs.  相似文献   

15.
16.
The primary scientific objectives of the Hard X-Ray Burst Spectrometer (HXRBS) to be flown on the Solar Maximum Mission are as follows: (1) To determine the nature of the mechanisms which accelerate electrons to 20–100 keV in the first stage of a solar flare and to > 1 MeV in the second stage of many flares; and (2) to characterize the spatial and temporal relation between electron acceleration, storage and energy loss throughout a solar flare.Measurements of the spectrum of solar X-rays will be made in the energy range from 20 to 260 keV using an actively-shielded CsI(Na) scintillator with a thickness of 0.635 cm and a sensitive area of 71 cm2. Continuous measurements with a time resolution of 0.128 s will be made of the 15-channel energy-loss spectrum of events in this scintillator in anticoincidence with events in the CsI(Na) shield. Counting-rate data with a time resolution as short as 1 ms will also be available from a limited period each orbit using a 32K-word circulating memory triggered by a high event rate.In the first year after launch, it is expected that approximately 1000 flares will be observed above the instrument sensitivity threshold, which corresponds to a 20–200 keV X-ray flux of 2 × 10–1 photons (cm2 s)–1 lasting for at least one second.  相似文献   

17.
The scientific goals and construction details of a new design, Polish X-ray spectrophotometer are given. It will be incorporated within the Russian TESIS X and EUV complex aboard the forthcoming CORO-NAS solar mission. SphinX (Solar Photometer in X-rays) will use PIN silicon detectors for high time resolution (0.01 s) measurements of the solar spectra of quiet and active corona in the range 0.5–15 keV. A new filter-fluorescence target concept will be employed to allow for a fast photometry of the solar X-ray flux variations in selected, well defined narrow spectral bands including the Fe XXVI and Fe XXV iron line groups.  相似文献   

18.
The RHESSI Spectrometer   总被引:2,自引:0,他引:2  
Smith  D.M.  Lin  R.P.  Turin  P.  Curtis  D.W.  Primbsch  J.H.  Campbell  R.D.  Abiad  R.  Schroeder  P.  Cork  C.P.  Hull  E.L.  Landis  D.A.  Madden  N.W.  Malone  D.  Pehl  R.H.  Raudorf  T.  Sangsingkeow  P.  Boyle  R.  Banks  I.S.  Shirey  K.  Schwartz  Richard 《Solar physics》2002,210(1-2):33-60
RHESSI observes solar photons over three orders of magnitude in energy (3 keV to 17 MeV) with a single instrument: a set of nine cryogenically cooled coaxial germanium detectors. With their extremely high energy resolution, RHESSI can resolve the line shape of every known solar gamma-ray line except the neutron capture line at 2.223 MeV. High resolution also allows clean separation of thermal and non-thermal hard X-rays and the accurate measurement of even extremely steep power-law spectra. Detector segmentation, fast signal processing, and two sets of movable attenuators allow RHESSI to make high-quality spectra and images of flares across seven orders of magnitude in intensity. Here we describe the configuration and operation of the RHESSI spectrometer, show early results on in-flight performance, and discuss the principles of spectroscopic data analysis used by the RHESSI software.  相似文献   

19.
太阳硬X射线成像望远镜模拟研究   总被引:1,自引:0,他引:1  
滕藤  伍健  常进 《天文学报》2011,52(4):339-351
调制准直器型太阳硬X射线成像望远镜是目前较为通用的太阳观测设备.空间调制望远镜是基于中心轴不旋转的望远镜,适用于3轴稳定的卫星.针对我国可能的太阳观测计划,给出并比较了两组空间调制望远镜的配置方案,然后利用GEANT4高能物理通用软件模拟实际光子的计数情况,使用MATLAB实现图像重建.比较模拟光子计数得到的重建图与几...  相似文献   

20.
The SPR-N polarimeter onboard the CORONAS-F satellite allows the X-ray polarization degree to be measured in energy ranges of 20–40, 40–60, and 60–100 keV. To measure the polarization, the method based on the Thompson scattering of solar X-ray photons in beryllium plates was used; the scattered photons were detected with a system of six CsI(Na) scintillation sensors. During the observation period from August 2001 to January 2005, the SPR-N instrument detected the hard X-rays of more than 90 solar flares. The October 29, 2003, event showed a significant polarization degree exceeding 70% in channels of E = 40–60 and 60–100 keV and about 50% in the 20-to 40-keV channel. The time profile of the polarization degree and the projection of the polarization plane onto the solar disk were determined. For 25 events, the upper limits of the part of polarized X-rays were estimated at 8 to 40%. For all the flares detected, time profiles (with a resolution of up to 4 s), hard X-ray radiation fluxes, and spectral index estimates were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号