首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Desired rock fragmentation is the main goal of the blasting operation in surface mines, civil and tunneling works. Therefore, precise prediction of rock fragmentation is very important to achieve an economically successful outcome. The primary objective of this article is to propose a new model for forecasting the rock fragmentation using adaptive neuro-fuzzy inference system (ANFIS) in combination with particle swarm optimization (PSO). The proposed PSO–ANFIS model has been compared with support vector machines (SVM), ANFIS and nonlinear multiple regression (MR) models. To construct the predictive models, 72 blasting events were investigated, and the values of rock fragmentation as well as five effective parameters on rock fragmentation, i.e., specific charge, stemming, spacing, burden and maximum charge used per delay were measured. Based on several statistical functions [e.g., coefficient of correlation (R 2) and root-mean-square error (RMSE)], it was found that the PSO–ANFIS (with R 2 = 0.89 and RMSE = 1.31) performs better than the SVM (with R 2 = 0.83 and RMSE = 1.66), ANFIS (with R 2 = 0.81 and RMSE = 1.78) and nonlinear MR (with R 2 = 0.57 and RMSE = 3.93) models. Finally, the sensitivity analysis shows that the burden and maximum charge used per delay have the least and the most effects on the rock fragmentation, respectively.

  相似文献   

2.

Stream-flow forecasting is a crucial task for hydrological science. Throughout the literature, traditional and artificial intelligence models have been applied to this task. An attempt to explore and develop better expert models is an ongoing endeavor for this hydrological application. In addition, the accuracy of modeling, confidence and practicality of the model are the other significant problems that need to be considered. Accordingly, this study investigates modern non-tuned machine learning data-driven approach, namely extreme learning machine (ELM). This data-driven approach is containing single layer feedforward neural network that selects the input variables randomly and determine the output weights systematically. To demonstrate the reliability and the effectiveness, one-step-ahead stream-flow forecasting based on three time-scale pattern (daily, mean weekly and mean monthly) for Johor river, Malaysia, were implemented. Artificial neural network (ANN) model is used for comparison and evaluation. The results indicated ELM approach superior the ANN model level accuracies and time consuming in addition to precision forecasting in tropical zone. In measureable terms, the dominance of ELM model over ANN model was indicated in accordance with coefficient determination (R 2) root-mean-square error (RMSE) and mean absolute error (MAE). The results were obtained for example the daily time scale R 2 = 0.94 and 0.90, RMSE = 2.78 and 11.63, and MAE = 0.10 and 0.43, for ELM and ANN models respectively.

  相似文献   

3.
Snow water equivalent (SWE) is a key parameter in hydrological cycle, and information on regional SWE is required for various hydrological and meteorological applications, as well as for hydropower production and flood forecasting. This study compares the snow depth and SWE estimated by multivariate linear regression (MLR), discriminant function analysis, ordinary kriging, ordinary kriging-multivariate linear regression, ordinary kriging-discriminant function analysis, artificial neural network (ANN) and neural network-genetic algorithm (NNGA) models. The analysis was performed in the 5.2 km2 area of Samsami basin, located in the southwest of Iran. Statistical criteria were used to measure the models’ performances. The results indicated that NNGA, ANN and MLR methods were able to predict SWE at the desirable level of accuracy. However, the NNGA model with the highest coefficient of determination (R 2 = 0.70, P value < 0.05) and minimum root mean square error (RMSE = 0.202 cm) provided the best results among the other models. The lower SWE values were registered in the east of study area and higher SWE values appeared in the west of study area where altitude was higher.  相似文献   

4.
Forecasting, using historic time-series data, has become an important tool for fisheries management. ARIMA modeling, Modeling for Optimal Forecasting techniques and Decision Support Systems based on fuzzy mathematics may be used to predict the general trend of a given fish landings time-series with increased reliability and accuracy. The present paper applies these three modeling methods to forecast anchovy fish catches landed in a given port (Thessaloniki, Greece) during 1979–2000 and hake and bonito total fish catches during 1982–2000. The paper attempts to assess the model's accuracy by comparing model results to the actual monthly fish catches of the year 2000. According to the measures of forecasting accuracy established, the best forecasting performance for anchovy was shown by the DSS model (MAPE = 28.06%, RMSE = 76.56, U-statistic = 0.67 and R2 = 0.69). The optimal forecasting technique of genetic modeling improved significantly the forecasting values obtained by the selected ARIMA model. Similarly, the DSS model showed a noteworthy forecasting efficiency for the prediction of hake landings, during the year 2000 (MAPE = 2.88%, RMSE = 13.75, U-statistic = 0.19 and R2 = 0.98), as compared to the other two modeling techniques. Optimal forecasting produced by combined modeling scored better than application of the simple ARIMA model. Overall, DSS results showed that the Fuzzy Expected Intervals methodology could be used as a very reliable tool for short-term predictions of fishery landings.  相似文献   

5.

This paper evaluates the ability of wavelet transform in improving the accuracy of artificial neural network (ANN) and adaptive neuro-fuzzy interface systems (ANFIS) models. In this study, the performance of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating daily evapotranspiration in arid regions was evaluated. Prior to the development of models, gamma test was used to identify the best input combinations that could be used under limited data scenario. Performance of the proposed hybrid models was compared to ANN, ANFIS, and conventionally used Hargreaves equation. The results revealed that use of wavelet transform as data preprocessing technique enhanced the efficiency of ANN and ANFIS models. Wavelet-ANN and Wavelet-ANFIS performed reasonably better than other models. Better handling of wavelet-decomposed input variables enabled Wavelet-ANN models to perform slightly better than the Wavelet-ANFIS models. W-ANN2 (RMSE = 0.632 mm/day and R = 0.96) was found to be the best model for estimating daily evapotranspiration in arid regions. The proposed W-ANN2 model used second-level db3 wavelet-decomposed subseries of temperature and previous day evapotranspiration values as inputs. The study concludes that hybrid Wavelet-ANN and Wavelet-ANFIS models can be effectively used for modeling evapotranspiration.

  相似文献   

6.
Estimation of diurnal air temperature using MSG SEVIRI data in West Africa   总被引:6,自引:0,他引:6  
Spatially distributed air temperature data with high temporal resolution are desired for several modeling applications. By exploiting the thermal split window channels in combination with the red and near infrared channels of the geostationary MSG SEVIRI sensor, multiple daily air temperature estimates can be achieved using the contextual temperature-vegetation index method. Air temperature was estimated for 436 image acquisitions during the 2005 rainy season over West Africa and evaluated against in situ data from a field test site in Dahra, Northern Senegal. The methodology was adjusted using data from the test site resulting in RMSE = 2.55 K, MBE = − 0.30 K and R2 = 0.63 for the estimated versus observed air temperatures. A spatial validation of the method using 12 synoptic weather stations from Senegal and Mali within the Senegal River basin resulted in overall values of RMSE = 2.96 K, MBE = − 1.11 K and R2 = 0.68. The daytime temperature curve is interpolated using a sine function based on the multiple daily air temperature estimates from the SEVIRI data. These estimates (covering the 8:00-20:00 UCT time window) were in good agreement with observed values with RMSE = 2.99 K, MBE = − 0.70 K and R2 = 0.64. The temperature-vegetation index method was applied as a moving window technique to produce distributed maps of air temperature with 15 min intervals and 3 km spatial resolution for application in a distributed hydrological model.  相似文献   

7.
In this article, artificial neural network (ANN) is adopted to predict photovoltaic (PV) panel behaviors under realistic weather conditions. ANN results are compared with analytical four and five parameter models of PV module. The inputs of the models are the daily total irradiation, air temperature and module voltage, while the outputs are the current and power generated by the panel. Analytical models of PV modules, based on the manufacturer datasheet values, are simulated through Matlab/Simulink environment. Multilayer perceptron is used to predict the operating current and power of the PV module. The best network configuration to predict panel current had a 3–7–4–1 topology. So, this two hidden layer topology was selected as the best model for predicting panel current with similar conditions. Results obtained from the PV module simulation and the optimal ANN model has been validated experimentally. Results showed that ANN model provide a better prediction of the current and power of the PV module than the analytical models. The coefficient of determination (R2), mean square error (MSE) and the mean absolute percentage error (MAPE) values for the optimal ANN model were 0.971, 0.002 and 0.107, respectively. A comparative study among ANN and analytical models was also carried out. Among the analytical models, the five-parameter model, with MAPE = 0.112, MSE = 0.0026 and R2 = 0.919, gave better prediction than the four-parameter model (with MAPE = 0.152, MSE = 0.0052 and R2 = 0.905). Overall, the 3–7–4–1 ANN model outperformed four-parameter model, and was marginally better than the five-parameter model.  相似文献   

8.
The relative concentrations of different pigments within a leaf have significant physiological and spectral consequences. Photosynthesis, light use efficiency, mass and energy exchange, and stress response are dependent on relationships among an ensemble of pigments. This ensemble also determines the visible characteristics of a leaf, which can be measured remotely and used to quantify leaf biochemistry and structure. But current remote sensing approaches are limited in their ability to resolve individual pigments. This paper focuses on the incorporation of three pigments—chlorophyll a, chlorophyll b, and total carotenoids—into the LIBERTY leaf radiative transfer model to better understand relationships between leaf biochemical, biophysical, and spectral properties.Pinus ponderosa and Pinus jeffreyi needles were collected from three sites in the California Sierra Nevada. Hemispheric single-leaf visible reflectance and transmittance and concentrations of chlorophylls a and b and total carotenoids of fresh needles were measured. These data were input to the enhanced LIBERTY model to estimate optical and biochemical properties of pine needles. The enhanced model successfully estimated reflectance (RMSE = 0.0255, BIAS = 0.00477, RMS%E = 16.7%), had variable success estimating transmittance (RMSE = 0.0442, BIAS = 0.0294, RMS%E = 181%), and generated very good estimates of carotenoid concentrations (RMSE = 2.48 µg/cm2, BIAS = 0.143 µg/cm2, RMS%E = 20.4%), good estimates of chlorophyll a concentrations (RMSE = 10.7 µg/cm2, BIAS = − 0.992 µg/cm2, RMS%E = 21.1%), and fair estimates of chlorophyll b concentrations (RMSE = 7.49 µg/cm2, BIAS = − 2.12 µg/cm2, RMS%E = 43.7%). Overall root mean squared errors of reflectance, transmittance, and pigment concentration estimates were lower for the three-pigment model than for the single-pigment model. The algorithm to estimate three in vivo specific absorption coefficients is robust, although estimated values are distorted by inconsistencies in model biophysics. The capacity to invert the model from single-leaf reflectance and transmittance was added to the model so it could be coupled with vegetation canopy models to estimate canopy biochemistry from remotely sensed data.  相似文献   

9.
The growth of mass populations of toxin-producing cyanobacteria is a serious concern for the ecological status of inland waterbodies and for human and animal health. In this study we examined the performance of four semi-analytical algorithms for the retrieval of chlorophyll a (Chl a) and phycocyanin (C-PC) from data acquired by the Compact Airborne Spectrographic Imager-2 (CASI-2) and the Airborne Imaging Spectrometer for Applications (AISA) Eagle sensor. The retrieval accuracies of the semi-analytical models were compared to those returned by optimally calibrated empirical band-ratio algorithms. The best-performing algorithm for the retrieval of Chl a was an empirical band-ratio model based on a quadratic function of the ratio of reflectance at 710 and 670 nm (R2 = 0.832; RMSE = 29.8%). However, this model only provided a marginally better retrieval than the best semi-analytical algorithm. The best-performing model for the retrieval of C-PC was a semi-analytical nested band-ratio model (R2 = 0.984; RMSE = 3.98 mg m3). The concentrations of C-PC retrieved using the semi-analytical model were correlated with cyanobacterial cell numbers (R2 = 0.380) and the particulate and total (particulate plus dissolved) pools of microcystins (R2 = 0.858 and 0.896 respectively). Importantly, both the empirical and semi-analytical algorithms were able to retrieve the concentration of C-PC at cyanobacterial cell concentrations below current warning thresholds for cyanobacteria in waterbodies. This demonstrates the potential of remote sensing to contribute to early-warning detection and monitoring of cyanobacterial blooms for human health protection at regional and global scales.  相似文献   

10.
Leaf area index (LAI) is an important parameter used by most process-oriented ecosystem models. LAI of forest ecosystems has routinely been mapped using spectral vegetation indices (SVI) derived from remote sensing imagery. The application of SVI-based approaches to map LAI in peatlands presents a challenge, mainly due to peatlands characteristic multi-layer canopy comprising shrubs and open, discontinuous tree canopies underlain by a continuous ground cover of different moss species, which reduces the greenness contrast between the canopy and the background.Our goal is to develop a methodology to map tree and shrub LAI in peatlands and similar ecosystems based on multiple endmember spectral mixture analysis (MESMA). This new mapping method is validated using LAI field measurements from a precipitation-fed (ombrotrophic) peatland near Ottawa, Ontario, Canada. We demonstrate first that three commonly applied SVI are not suitable for tree and shrub LAI mapping in ombrotrophic peatlands. Secondly, we demonstrate for a three-endmember model the limitations of traditional linear spectral mixture analysis (SMA) due to the unique and widely varying spectral characteristics of Sphagnum mosses, which are significantly different from vascular plants. Next, by using a geometric-optical radiative transfer model, we determine the nature of the equation describing the empirical relationship between shadow fraction and tree LAI using nonlinear ordinary least square (OLS) regression. We then apply this equation to describe the empirical relationships between shadow and shrub fractions obtained from mixture decomposition with SMA and MESMA, respectively, and tree and shrub LAI, respectively. Less accurate fractions obtained from SMA result in weaker relationships between shadow fraction and tree LAI (R2 = 0.61) and shrub fraction and shrub LAI (R2 = 0.49) compared to the same relationships based on fractions obtained from MESMA with R2 = 0.75 and R2 = 0.68, respectively. Cross-validation of tree LAI (R2 = 0.74; RMSE = 0.48) and shrub LAI (R2 = 0.68; RMSE = 0.42) maps using fractions from MESMA shows the suitability of this approach for mapping tree and shrub LAI in ombrotrophic peatlands. The ability to account for a spectrally varying, unique Sphagnum moss ground cover during mixture decomposition and a two layer canopy is particularly important.  相似文献   

11.
This work has focussed on the development of an indirect method for estimating methane fluxes from paddy fields and wetlands. A micrometeorological model, based on an analytical solution of the Eulerian advection–diffusion equation for vertical diffusion, has been used; model parameters include the location of the methane analyser and standard surface layer scaling factors. Flux chambers, which are commonly used for measuring methane fluxes from agricultural sources, are usually mechanically operated with a rated induced-draft fan and as such cannot replicate the real world atmospheric conditions. The results are not very reliable due to leakages along the piping and at fittings, especially when these chambers are used over a relatively rough surface like an agricultural field or a wetland. The results of the model have been compared with those from the direct method. The seasonal average methane flux calculated by the indirect method, for the cultivar type “Sundari”, is 7.13E+05 g/ha, while cultivar type “Shatabdi” gives a little lower value of 5.22E+05 g/ha. In case of the direct chamber method also, the seasonal average methane flux for the cultivar type “Sundari” (6.20E+05 g/ha) is more than cultivar type “Shatabdi” (4.84E+05 g/ha). When the two methods of assessment were compared, season September–December 2004 gave r2 = 0.91, RMSE = 0.16 and MNB = 0.13 while we got r2 = 0.94, RMSE = 1.22 and MNB = 0.06 for the season September–December 2005.In very few experiments we could cover a huge aerial plot instead of a huge number of experiments necessary for the direct chamber method.  相似文献   

12.
This study investigated the effects of upstream stations’ flow records on the performance of artificial neural network (ANN) models for predicting daily watershed runoff. As a comparison, a multiple linear regression (MLR) analysis was also examined using various statistical indices. Five streamflow measuring stations on the Cahaba River, Alabama, were selected as case studies. Two different ANN models, multi layer feed forward neural network using Levenberg–Marquardt learning algorithm (LMFF) and radial basis function (RBF), were introduced in this paper. These models were then used to forecast one day ahead streamflows. The correlation analysis was applied for determining the architecture of each ANN model in terms of input variables. Several statistical criteria (RMSE, MAE and coefficient of correlation) were used to check the model accuracy in comparison with the observed data by means of K-fold cross validation method. Additionally, residual analysis was applied for the model results. The comparison results revealed that using upstream records could significantly increase the accuracy of ANN and MLR models in predicting daily stream flows (by around 30%). The comparison of the prediction accuracy of both ANN models (LMFF and RBF) and linear regression method indicated that the ANN approaches were more accurate than the MLR in predicting streamflow dynamics. The LMFF model was able to improve the average of root mean square error (RMSEave) and average of mean absolute percentage error (MAPEave) values of the multiple linear regression forecasts by about 18% and 21%, respectively. In spite of the fact that the RBF model acted better for predicting the highest range of flow rate (flood events, RMSEave/RBF = 26.8 m3/s vs. RMSEave/LMFF = 40.2 m3/s), in general, the results suggested that the LMFF method was somehow superior to the RBF method in predicting watershed runoff (RMSE/LMFF = 18.8 m3/s vs. RMSE/RBF = 19.2 m3/s). Eventually, statistical differences between measured and predicted medians were evaluated using Mann-Whitney test, and differences in variances were evaluated using the Levene's test.  相似文献   

13.
Lack of data often limits understanding and management of biodiversity in forested areas. Remote sensing imagery has considerable potential to aid in the monitoring and prediction of biodiversity across many spatial and temporal scales. In this paper, we explored the possibility of defining relationships between species diversity indices and Landsat ETM+ reflectance values for Hyrcanian forests in Golestan province of Iran. We used the COST model for atmospheric correction of the imagery. Linear regression models were implemented to predict measures of biodiversity (species richness and reciprocal of Simpson indices) using various combinations of Landsat spectral data. Species richness was modeled using the band set ETM5, ETM7, DVI, wetness and variances of ETM1, ETM2 and ETM5 (adjusted R2 = 0.59, RMSE = 1.51). Reciprocal of Simpson index was modeled using the band set NDVI, brightness, greenness, variances of ETM2, ETM5 and ETM7 (adjusted R2 = 0.459 RMSE = 1.15). The results demonstrated that spectral reflectance from Landsat can be used to effectively model tree species diversity. Predictive map derived from the presented methodology can help evaluate spatial aspects and monitor tree species diversity of the studied forest. The methodology also facilitates the evaluation of forest management and conservation strategies in northern Iran.  相似文献   

14.
In this paper, responses of a gas sensor array were employed to establish a quality indices model evaluating the peach quality indices. The relationship between sensor signals and the firmness, the content of sugar (CS) and acidity of “Dabai” peach were developed using multiple linear regressions with stepwise procedure, quadratic polynomial step regression (QPST) and back-propagation network. The results showed that the multiple linear regression model represented good ability in predicting of quality indices, with high correlation coefficients (R2 = 0.87 for penetrating force CF; R2 = 0.79 for content of sugar CS; R2 = 0.81 for pH) and relatively low average percent errors (ERR) (9.66%, 7.68% and 3.6% for CF, CS and pH, respectively). The quadratic polynomial step regression provides an accurate quality indices model, with high correlation (R2 = 0.92, 0.87, 0.83 for CF, CS and pH, respectively) between predicted and measured values and a relatively low error (5.47%, 3.45%, 2.57% for CF, CS and pH, respectively) for prediction. The feed-forward neural network also provides an accurate quality indices model with a high correlation (R2 = 0.90, 0.81, 0.87 for CF, CS and pH, respectively) between predicted and measured values and a relatively low average percent error (6.39%, 6.21%, 3.13% for CF, CS and pH, respectively) for prediction. These results prove that the electronic nose has the potential of becoming a reliable instrument to assess the peach quality indices.  相似文献   

15.
The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha− 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha− 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.  相似文献   

16.
Regional evaporation estimates from flux tower and MODIS satellite data   总被引:10,自引:0,他引:10  
Two models were evaluated for their ability to estimate land surface evaporation at 16-day intervals using MODIS remote sensing data and surface meteorology as inputs. The first was the aerodynamic resistance-surface energy balance model, and the second was the Penman-Monteith (P-M) equation, where the required surface conductance is estimated from remotely-sensed leaf area index. The models were tested using 3 years of evaporation and meteorological measurements from two contrasting Australian ecosystems, a cool temperate, evergreen Eucalyptus forest and a wet/dry, tropical savanna. The aerodynamic resistance-surface energy balance approach failed because small errors in the radiative surface temperature translate into large errors in sensible heat, and hence into estimates of evaporation. The P-M model adequately estimated the magnitude and seasonal variation in evaporation in both ecosystems (RMSE = 27 W m− 2, R2 = 0.74), demonstrating the validity of the proposed surface conductance algorithm. This, and the ability to constrain evaporation estimates via the energy balance, demonstrates the superiority of the P-M equation over the surface temperature-based model. There was no degradation in the performance of the P-M model when gridded meteorological data at coarser spatial (0.05°) and temporal (daily) resolution were substituted for locally-measured inputs.The P-M approach was used to generate a monthly evaporation climatology for Australia from 2001 to 2004 to demonstrate the potential of this approach for monitoring land surface evaporation and constructing monthly water budgets from 1-km to continental spatial scales.  相似文献   

17.
The leaf area index (LAI) is the key biophysical indicator used to assess the condition of rangeland. In this study, we investigated the implications of narrow spectral response, high radiometric resolution (12 bits), and higher signal-to-noise ratio of the Landsat 8 Operational Land Imager (OLI) sensor for the estimation of LAI. The Landsat 8 LAI estimates were compared to that of its predecessors, namely Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (8 bits). Furthermore, we compared the radiative transfer model (RTM) and spectral indices approaches for estimating LAI on rangeland systems in South Africa. The RTM was inverted using artificial neural network (ANN) and lookup table (LUT) algorithms. The accuracy of the models was higher for Landsat 8 OLI, where ANN (root mean squared error, RMSE = 0. 13; R2 = 0. 89), LUT (RMSE = 0. 25; R2 = 0. 50), compared to Landsat 7 ETM+, where ANN (RMSE = 0. 35; R2 = 0. 60), LUT (RMSE = 0. 38; R2 = 0. 50). Compared to an empirical approach, the RTM provided higher accuracy. In conclusion, Landsat 8 OLI provides an improvement for the estimation of LAI over Landsat 7 ETM+. This is useful for rangeland monitoring.  相似文献   

18.
For the multivariate continuous function, using constructive feedforward L2 (\mathbbR) L^{2} (\mathbb{R}) radial basis function (RBF) neural network, we prove that a L2 (\mathbbR) L^{2} (\mathbb{R}) RBF neural network with n + 1 hidden neurons can interpolate n + 1 multivariate samples with zero error. Then, we prove that the L2 (\mathbbR) L^{2} (\mathbb{R}) RBF neural network can uniformly approximate any continuous multivariate function with arbitrary precision. The correctness and effectiveness are verified through eight numeric experiments.  相似文献   

19.

The accurate estimation of soil dispersivity (α) is required for characterizing the transport of contaminants in soil. The in situ measurement of α is costly and time-consuming. Hence, in this study, three soft computing methods, namely adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and gene expression programming (GEP), are used to estimate α from more readily measurable physical soil variables, including travel distance from source of pollutant (L), mean grain size (D 50), soil bulk density (ρ b), and contaminant velocity (V c). Based on three statistical metrics [i.e., mean absolute error, root-mean-square error (RMSE), and coefficient of determination (R 2)], it is found that all approaches (ANN, ANFIS, and GEP) can accurately estimate α. Results also show that the ANN model (with RMSE = 0.00050 m and R 2 = 0.977) performs better than the ANFIS model (with RMSE = 0.00062 m and R 2 = 0.956), and the estimates from GEP are almost as accurate as those from ANFIS. The performance of ANN, ANFIS, and GEP models is also compared with the traditional multiple linear regression (MLR) method. The comparison indicates that all of the soft computing methods outperform the MLR model. Finally, the sensitivity analysis shows that the travel distance from source of pollution (L) and bulk density (ρ b) have, respectively, the most and the least effect on the soil dispersivity.

  相似文献   

20.
In this paper the possibility of predicting salt concentrations in soils from measured reflectance spectra is studied using partial least squares regression (PLSR) and artificial neural network (ANN). Performance of these two adaptive methods has been compared in order to examine linear and non-linear relationship between soil reflectance and salt concentration.Experiment-, field- and image-scale data sets were prepared consisting of soil EC measurements (dependent variable) and their corresponding reflectance spectra (independent variables). For each data set, PLSR and ANN predictive models of soil salinity were developed based on soil reflectance data. The predictive accuracies of PLSR and ANN models were assessed against independent validation data sets not included in the calibration or training phase.The results of PLSR analyses suggest that an accurate to good prediction of EC can be made based on models developed from experiment-scale data (R2 > 0.81 and RPD (ratio of prediction to deviation) > 2.1) for soil samples salinized by bischofite and epsomite minerals. For field-scale data sets, the PLSR predictive models provided approximate quantitative EC estimations (R2 = 0.8 and RPD = 2.2) for grids 1 and 6 and poor estimations for grids 2, 3, 4 and 5. The salinity predictions from image-scale data sets by PLSR models were very reliable to good (R2 between 0.86 and 0.94 and RPD values between 2.6 and 4.1) except for sub-image 2 (R2 = 0.61 and RPD = 1.2).The ANN models from experiment-scale data set revealed similar network performances for training, validation and test data sets indicating a good network generalization for samples salinized by bischofite and epsomite minerals. The RPD and the R2 between reference measurements and ANN outputs of theses models suggest an accurate to good prediction of soil salinity (R2 > 0.92 and RPD > 2.3). For the field-scale data set, prediction accuracy is relatively poor (0.69 > R2 > 0.42). The ANN predictive models estimating soil salinity from image-scale data sets indicate a good prediction (R2 > 0.86 and RPD > 2.5) except for sub-image 2 (R2 = 0.6 and RPD = 1.2).The results of this study show that both methods have a great potential for estimating and mapping soil salinity. Performance indexes from both methods suggest large similarity between the two approaches with PLSR advantages. This indicates that the relation between soil salinity and soil reflectance can be approximated by a linear function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号