首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the tissue engineering (TE) field, the concept of producing multifunctional scaffolds, capable not only of acting as templates for cell transplantation but also of delivering bioactive agents in a controlled manner, is an emerging strategy aimed to enhance tissue regeneration. In this work, a complex hybrid release system consisting in a three-dimensional (3D) structure based on poly(d,l-lactic acid) (PDLLA) impregnated with chitosan/chondroitin sulfate nanoparticles (NPs) was developed. The scaffolds were prepared by supercritical fluid foaming at 200 bar and 35 °C, and were then characterized by scanning electron microscopy (SEM) and micro-CT. SEM also allowed to assess the distribution of the NPs within the structure, showing that the particles could be found in different areas of the scaffold, indicating a homogeneous distribution within the 3D structure. Water uptake and weight loss measurements were also carried out and the results obtained demonstrated that weight loss was not significantly enhanced although the entrapment of the NPs in the 3D structure clearly enhances the swelling of the structure. Moreover, the hybrid porous biomaterial displayed adequate mechanical properties for cell adhesion and support. The possibility of using this scaffold as a multifunctional material was further evaluated by the incorporation of a model protein, bovine serum albumin (BSA), either directly into the PDLLA foam or in the NPs that were eventually included in the scaffold. The obtained results show that it is possible to achieve different release kinetics, suggesting that this system is a promising candidate for dual protein delivery system for TE applications.  相似文献   

2.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications.  相似文献   

3.
Fractionated samples of d,l-poly(lactic acid) (PLA) were prepared and the dielectric normal mode relaxation was studied for dilute and semi-dilute solutions of the PLA in a good solvent benzene. Results indicate that in the dilute regime the normal mode relaxation time is proportional to [η]Mw in agreement with the Rouse-Zimm theory, where [η] and Mw denote the intrinsic viscosity and weight average molecular weight, respectively. The dielectric relaxation strength which is proportional to the mean square end-to-end distance 〈r2〉 increases with increasing Mw with the power of 2ν, where ν is the excluded volume parameter determined from [η]. The relaxation time in the semi-dilute regime increases with increasing concentration C due to increases of the entanglement density and the friction coefficient. The relaxation time corrected to the iso-friction state agrees approximately with the dynamic scaling theories. The relaxation strength decreases with increasing concentration indicating that 〈r2〉 decreases on account of the screening of the excluded volume effect. The concentration dependence of 〈r2〉 agrees approximately with the scaling theory proposed by Daoud and Jannink.  相似文献   

4.
Jeffrey S. Wiggins 《Polymer》2006,47(6):1960-1969
d,l-Lactide was initiated with 1,4-butanediol in the presence of stannous octoate catalyst to provide hydroxyl-terminated poly(d,l-lactide) at 5000 and 20,000 g/mol. Portions of these materials were reacted with succinic anhydride in the presence of 1-methylimidazole to convert the hydroxyl functionality to succinic acid-terminated polymers in relatively high yield. The four materials were placed in a 7.4 pH buffered saline solution at 37 °C and monitored up to 180 days for their relative moisture uptake and weight loss behaviors. Carboxylic acid functionality displayed a dramatic effect on the moisture uptake behaviors for the 5000 and 20,000 g/mol polymers when compared to their respective hydroxyl functional materials. Carboxylic acid functionality significantly increased the hydrolytic degradation rate and mass loss behavior for the 5000 g/mol material, but did not affect the hydrolytic degradation rate for the higher molecular weight sample. These results suggest that moisture uptake is not the rate limiting step for the hydrolytic degradation high molecular weight poly(d,l-lactide).  相似文献   

5.
To achieve the feed stock recycling of poly(l-lactide) (PLLA) to l,l-lactide, PLLA composites including alkali earth metal oxides, such as calcium oxide (CaO) and magnesium oxide (MgO), were prepared and the effect of such metal oxides on the thermal degradation was investigated from the viewpoint of selective l,l-lactide formation. Metal oxides both lowered the degradation temperature range of PLLA and completely suppressed the production of oligomers other than lactides. CaO markedly lowered the degradation temperature, but caused some racemization of lactide, especially in a temperature range lower than 250 °C. Interestingly, with MgO racemization was avoided even in the lower temperature range. It is considered that the effect of MgO on the racemization is due to the lower basicity of Mg compared to Ca. At temperatures lower than 270 °C, the pyrolysis of PLLA/MgO (5 wt%) composite occurred smoothly causing unzipping depolymerization, resulting in selective l,l-lactide production. A degradation mechanism was discussed based on the results of kinetic analysis. A practical approach for the selective production of l,l-lactide from PLLA is proposed by using the PLLA/MgO composite.  相似文献   

6.
Mohammad K. Hassan 《Polymer》2007,48(7):2022-2029
Broadband dielectric spectroscopy was used to examine carboxylic acid-terminated poly(d,l-lactide) samples that were hydrolytically degraded in 7.4 pH phosphate buffer solutions at 37 °C. The dielectric spectral signatures of degraded samples were considerably more distinct than those of undegraded samples and a Tg-related relaxation associated with long range chain segmental mobility was seen. For both degraded and undegraded samples, a relaxation peak just beneath a DSC-based Tg was observed, which shifts to higher frequency with increasing temperature. Thus, this feature is assigned as the glass transition as viewed from the dielectric relaxation perspective. Linear segments on log-log plots of loss permittivity vs. frequency, in the low frequency regime, are attributed to d.c. conductivity. An upward shift in relaxation peak maximum, fmax, observed especially after 145 d of immersion in buffer, implies a decrease in the time scale of long range segmental motions with increased degradation time.Permittivity data for degraded and undegraded materials were fitted to the Havriliak-Negami equation with subtraction of the d.c. conductivity contribution to uncover pure relaxation peaks. Parameters extracted from these fits were used to construct Vogel-Fulcher-Tammann-Hesse (VFTH) curves and distribution of relaxation time, G(τ), curves for all samples. It was seen that the relaxation times for the α-transition in both degraded and undegraded samples showed VFTH temperature behavior. G(τ) curves showed a general broadening and shift to lower τ with degradation, which can be explained in terms of a broadening of molecular weight within degraded samples and faster chain motions.  相似文献   

7.
New ABC type terpolymers of poly(ethoxyethyl glycidyl ether)/poly(ethylene oxide)/poly(d,l-lactide) were obtained by multi-mode anionic polymerization. After successive deprotection of the ethoxyethyl groups from the first block, highly hydroxyl functionalized copolymers of polyglycidol/poly(ethylene oxide)/poly(d,l-lactide) were obtained. These copolymers form elongated ellipsoidal micelles by direct dissolution in water. The micelles consist of a poly(d,l-lactide) core and stabilizing shell of polyglycidol/poly(ethylene oxide). The hydroxyl groups of polyglycidol blocks situated at the micelle surface provide high functionality, which could be engaged in further chemical modification resulting in a potential drug targeting agents. The micellization process of the copolymers in aqueous media was studied by hydrophobic dye solubilization, static and dynamic light scattering, and transmission electron microscopy.  相似文献   

8.
Géraldine Rohman 《Polymer》2007,48(24):7017-7028
The use of semi-hydrolyzable oligoester-derivatized interpenetrating polymer networks (IPNs) as nanostructured precursors provides a straightforward and versatile approach toward mesoporous networks. Different poly(d,l-lactide) (PLA)/poly(methyl methacrylate) (PMMA)-based IPNs were synthesized by resorting to the so-called in situ sequential method. The PLA sub-network was first generated from a dihydroxy-telechelic PLA oligomer via an end-linking reaction with Desmodur® RU as a triisocyanate cross-linker. Subsequently, the methacrylic sub-network was created by free-radical copolymerization of methyl methacrylate (MMA) and a dimethacrylate (either bisphenol A dimethacrylate or diurethane dimethacrylate) with varying compositions (initial MMA/dimethacrylate composition ranging from 99/1 to 90/10 mol%). Both cross-linking processes were monitored by real-time infrared spectroscopy. The microphase separation developed in IPN precursors was investigated by differential scanning calorimetry (DSC). Furthermore, the quantitative hydrolysis of the PLA sub-network, under mild basic conditions, afforded porous methacrylic structures with pore sizes ranging from 10 to 100 nm -at most- thus showing the effective role of cross-linked PLA sub-chains as porogen templates. Pore sizes and pore size distributions were determined by scanning electron microscopy (SEM) and thermoporometry via DSC measurements. The mesoporosity of residual networks could be attributed to the good degree of chain interpenetration associated with both sub-networks in IPN precursors, due to their peculiar interlocking framework.  相似文献   

9.
Linbo Wu  Dan Cao  Yuan Huang  Bo-Geng Li 《Polymer》2008,49(3):742-748
In situ melt polycondensation of l-lactic acid (LLA) in the presence of acidic silica sol (aSS) is proposed for the first time to prepare PLLA/SiO2 nanocomposites. The SiO2 nanoparticles were readily dispersed in LLA monomer, which has similar polarity and hydrophilicity to the silica sol medium. During the polycondensation process, both the matrix and the surface of SiO2 nanoparticles changed from high polarity/hydrophilicity to weak polarity/hydrophobicity due to simultaneous chain growth in the organic phase and chemical grafting on the particle surface. The chemical grafting provided steric stabilization and ensured satisfactory nano-scale dispersion in the final nanocomposites. The introduction of SiO2 nanoparticles resulted in unchanged yield and better color. The molecular weight kept almost constant at low SiO2 content (<8 wt%) but decreased at higher SiO2 content. The method is also characterized by commercially available and cheap starting material and environmentally benign process. It appears to be a promising approach for the preparation of PLLA/SiO2 nanocomposites.  相似文献   

10.
The 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) mediated electrochemical oxidation of d-glucose to d-glucaric acid on a synthetically useful scale is reported. Using TEMPO and a graphite felt anode combined with a stainless steel cathode, d-glucose was oxidized under different conditions (pH, temperature, co-oxidant), and the reaction outcomes were analyzed. Optimized conditions for such oxidation are provided along with few new interesting results unique to this reaction, such as the appearance of a novel triacid.  相似文献   

11.
Guang-Xin Chen 《Polymer》2005,46(25):11829-11836
The morphology of an incompatible polymer blend composed of poly(l-lactide) (PLLA) and poly(butylene succinate) (PBS) was examined by scanning and transmission electron microscopy, X-ray scattering, and X-ray photoelectron spectroscopy before and after the incorporation of an organoclay containing reactive functional groups, namely twice functionalized organoclay (TFC). TFC was prepared by treating Cloisite® 25A with (glycidoxypropyl)trimethoxy silane. When a small amount of TFC was incorporated into the PLLA/PBS blend, the clay layers became fully exfoliated and were located mainly in the PLLA phase. At the low clay content, the dispersed phase had an almost constant domain size comparing with the PLLA/PBS blend, which decreased sharply as the clay content was further increased. When the clay content became high, the clay layers were dispersed not only in the PLLA phase but also in the PBS phase with intercalated/exfoliated coexisting morphology. The reactive TFC was found to play an important role in the blend similar to the in situ reactive compatibilizer. The specific interaction between the TFC and the polymer matrix was quantified by the Flory-Huggins interaction parameter, B, which was determined by combining the melting point depression and the binary interaction model. The morphology of the PLLA/PBS/clay composites was analyzed by considering the interaction parameter.  相似文献   

12.
Pham Hoai Nam 《Polymer》2005,46(18):7403-7409
The melt intercalation of poly(l-lactide) (PLLA) chains into silicate galleries has been investigated via a melting process without any shearing force at elevated temperature. Under the melting process, the incorporation of various types of organo-modified montmorillonites into PLLA matrix lead to the increase in the basal spacing of clay particles in different manner without delamination into individual layers. The changes in layer-stacked structures of the clay particles in the PLLA matrix were examined by use of wide-angle X-ray diffraction and transmission electron microscopy. The effects of clay content in PLLA matrix and clay surfactants on the melt intercalation of PLLA were discussed in terms of chain mobility.  相似文献   

13.
Among the various inorganic nucleators examined, Talc and an aluminum complex of a phosphoric ester combined with hydrotalcite (NA) were found to be effective for the melt-crystallization of poly(l-lactide) (PLLA) and PLLA/poly(d-lactide) (PDLA) stereo mixture, respectively. NA (1.0 phr (per one hundred resin)) can exclusively nucleate the stereocomplex crystals, while Talc cannot suppress the homo crystallization of PLLA and PDLA in the stereo mixture. Double use of Talc and NA (in 1.0 phr each) is highly effective for enhancing the crystallization temperature of the stereo complex without forming the homo crystals. The stereocomplex crystals nucleated by NA show a significantly lower melting temperature (207 °C) than the single crystal of the stereocomplex (230 °C) in spite of recording a large heat of crystallization ΔHc (54 J/g). Photomicrographic study suggests that the spherulites with a symmetric morphology are formed in the stereo mixture added with NA while the spherulites do not grow in size in the mixture added with Talc. The exclusive growth of the stereocomplex crystals by the melt-crystallization process will open a processing window for the PLLA/PDLA.  相似文献   

14.
A porous material consisting of biodegradable polymer fibers may be one of the best candidates for implants used in the regeneration of damaged tissue, because it has a continuous pore structure that would allow ingrowth of nutriments, tissues, blood vessels or cells. In the present work, short fibers of biodegradable poly(l-lactic acid) (PLLA) were successfully prepared by the dropwise addition of PLLA dissolved in methylene chloride to a poly(vinyl alcohol) (PVA) solution containing sodium tripolyphosphate with stirring. It was suggested that droplets of the PLLA solution form spheres coated with PVA, which are then deformed into fibrous shapes due to stirring. The length of fibers was 200-800 μm and was controlled by the stirring rate, the PLLA concentration of the droplets and the PVA concentration. A PLLA porous block could be easily prepared by sintering the PLLA fibers at 173 °C for 10 min. The material had a continuous pore structure with the average pore size of approximately 40 μm and porosity of about 80%.  相似文献   

15.
The results of investigations of phase behaviour in the systems l-lactic acid based polymers + carbon dioxide at high pressures are presented. The measurements have been performed in wide temperature and composition ranges. Two samples of the polymer differing in molecular weight (Mn: 1080 and 3990 g/mol) have been investigated. Both samples of the polymer were characterized with the gel permeation chromatography and NMR spectroscopy. The influence of the structure of the polymer on the solubility in supercritical carbon dioxide has been discussed. The results obtained suggest that the solubility of low molecular weight l-lactic acid based polymers in supercritical carbon dioxide is not controlled by its size, but to a large extent by the character of its terminal groups. The phase behaviour in the system l-lactic acid + carbon dioxide has been also investigated and the results were compared with those for the systems composed of l-lactic acid based polymers and carbon dioxide.  相似文献   

16.
Eamor M. Woo  Ling Chang 《Polymer》2011,52(26):6080-6089
Crystallization of nonequimolar compositions of poly(d-lactic acid) with low-molecular-weight poly(l-lactic acid) (PDLA/LMw-PLLA) blends leads to formation of various fractions of stereocomplexed PLA (sc-crystallites) and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA = 90/10, atomic-force microscopy (AFM) characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites.  相似文献   

17.
The spherulite growth behavior and mechanism of l-lactide copolymers, poly(l-lactide-co-d-lactide) [P(LLA-DLA)], poly(l-lactide-co-glycolide) [P(LLA-GA)], and poly(l-lactide-co-ε-caprolactone) [P(LLA-CL)] have been studied using polarization optical microscopy in comparison with poly(l-lactide) (PLLA) having different molecular weights to elucidate the effects of incorporated comonomer units. The incorporation of comonomer units reduced the radius growth rate of spherulites (G) and increased the induction period of spherulite formation (ti), irrespective of the kind of comonomer unit. Such effects became remarkable with the content of comonomers. At a crystallization temperature (Tc) of 130 °C, the disturbance effects of comonomers on the spherulite growth decreased in the following order: d-lactide>glycolide>ε-caprolactone, when compared at the same comonomer unit or reciprocal of averaged l-lactyl unit sequence length (ll). The ti estimation indicated that the glycolide units have the lowest disturbance effects on the formation of spherulite (crystallite) nuclei. The PLLA having the number-average molecular weight (Mn) exceeding 3.1×104 g mol−1 showed the transition from regime II to regime III at Tc=120 °C, whereas PLLA with the lowest Mn of 9.2×103 g mol−1 crystallized solely in regime III kinetics and the copolymers excluding P(LLA-DLA) with 3% of d-lactide units crystallized solely according to regime II kinetics. The nucleation and front constant for regime II and III [Kg(II), Kg(III), G0(II), and G0(III), respectively] estimated with each (not with a fixed for high-molecular-weight PLLA) decreased with increasing the amount of defects per unit mass of the polymer for crystallization, i.e. with increasing the comonomer content and the density of terminal group through decreasing the molecular weight.  相似文献   

18.
Hsuan-Ying Chen 《Polymer》2007,48(8):2257-2262
A novel calcium complex, [(DAIP)2Ca]2 (where DAIP-H = 2-[(2-dimethylamino-ethylimino)methyl]phenol), is prepared in a one flask reaction by condensation of Ca(OMe)2 with DAIP-H in toluene/THF. Experimental results show that in the presence of various alcohols, [(DAIP)2Ca]2 efficiently initiates the ring-opening polymerization of l-lactide in a controlled fashion, yielding polymers with expectative molecular weight and low polydispersity indexes. Furthermore, kinetic studies show a first-order dependency on both [LA] and [BnOH].  相似文献   

19.
Naoya Ninomiya  Toru Masuko 《Polymer》2007,48(16):4874-4882
Poly(l-lactide) (PLLA) film containing transcrystalline (TC) structures can easily be obtained by placing PLLA films melted between two poly(tetrafluoroethylene) (PTFE) sheets, followed by isothermal crystallization at 122 °C. The fine structures of the PLLA-TC film were studied by various structural techniques such as X-ray diffractometry, optical microscopy and transmission electron microscopy. We also examined the purification effect upon the morphology of PLLA-TC film. The formation of the TC structures revealed that one-dimensional spherulitic growth occurred from the assembling impurities as nucleation agent near the PTFE substrate in the heterogeneous nucleation system. We found that the b-axis of PLLA crystal was parallel to the lamellae growth direction confirmed using X-ray diffraction. The precipitated PLLA film crystallized in a similar process exhibited scanty TC textures, suggesting that the existence of impurity in the PLLA sample was an important factor for the formation of those structures.  相似文献   

20.
Reactions of d-xylose were investigated with a flow apparatus in water at high temperatures (350 and 400 °C) and high pressures (40-100 MPa) to elucidate the reaction pathway and reaction kinetics. The products obtained from the reaction of d-xylose were furfural, d-xylulose, glyceraldehyde, glycolaldehyde, dihydroxyacetone, pyruvaldehyde, lactic acid and formaldehyde. Experimental results showed evidence of a dehydration reaction pathway, a retro-aldol reaction pathway and a Lobry de Bruyn-Alberta van Ekenstein (LBET) pathway from d-xylulose. The proposed reaction pathway and kinetic model were in accord with the experimental results. The kinetic constants showed dependence with water density (pressure). At 400 °C and water density of 0.52 g/cm3 at 40 MPa, the reaction from d-xylose to d-xylulose occurred by the LBET pathway with the reverse reaction being negligible. At 400 °C, increasing the water density from 0.52 to 0.69 g/cm3 decreased the kinetic rate constant of the forward LBET pathway and increased that of the reverse LBET pathway. The kinetic rate constant of the dehydration of d-xylulose to furfural increased with increasing water density at constant temperature. The kinetic rate constant of the retro-aldol reaction of d-xylose increased, and the retro-aldol reaction of d-xylulose decreased with increasing water density at 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号