首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

2.
The Philippine islands are situated between two oppositely dipping zones of seismicity. With the exception of a few areas, such as in the west central Philippines where the North Palawan continental terrane (NPCT) has collided with the archipelago, these seismic zones are well defined to depths of 200 km. Active volcanic chains overlay segments in each of these zones, suggesting that subduction is presently taking place both east and west of the islands. Lavas we have studied are thus divided between what has been termed the West Philippine arc and the East Philippine arc.West Philippine arc volcanic rocks which were extruded before the Philippine archipelago collided with the NPCT, or which are younger than the collision but crop out hundreds of kilometers from the collision zone, and all but one of the rocks from the East Philippine arc fall in the MORB field on207Pb/204Pb versus206Pb/204Pb covariation diagrams. This is surprising considering the frequency with which arc materials have207Pb/204Pb ratios higher than those of MORB, the highBa/REE and Sr/REE ratios in the lavas and the possibility of sediment subduction given the small accretionary prisms. All of these rocks have high208Pb/204Pb ratios with respect to Pacific and Atlantic Ocean MORB, but are similar to Indian Ocean MORB and IOB. Thus the Philippines consist of island arcs with the peculiar Dupal isotopic anomaly documented between 0° and 60°S in the southern hemisphere and particularly in the Indian Ocean region. This demonstrates that the Dupal isotopic anomaly is not restricted to the southern hemisphere, or to MORB and OIB.Post-collision rocks cropping out near the NPCT, in the West Philippine arc, have elevated208Pb/204Pb and 207Pb/204Pb ratios that could be attributed to assimilation of the newly introduced continental crust (NPCT) by mantle-derived magmas or to the addition of a sedimentary component to mantle-derived magmas.  相似文献   

3.
An integrated study based on incompatible trace elements and Sr–Nd–Pb isotopes is presented in order to assess the mantle sources involved in the genesis of the Paraná Magmatic Province (PMP) tholeiites. Particular emphasis is given to 33 new Pb isotope and concentration data obtained in representative samples of low-TiO2 (LTiB) and high-TiO2 (HTiB) flood basalts that occur in the province. Results show important differences with respect to type and location of these rocks. The LTiB and HTiB from northern PMP exhibit very similar initial Pb isotope ratios (average LTiB vs HTiB: 206Pb/204Pbi=17.78±0.03 vs 17.65±0.02; 207Pb/204Pbi=15.53±0.01 vs 15.52±0.01; 208Pb/204Pbi=38.12±0.03 vs 38.05±0.04). The LTiB from southern PMP, with initial 87Sr/86Sri≤0.7060, show small variation in initial Pb isotope compositions (average 206Pb/204Pbi=18.20±0.07; 207Pb/204Pbi=15.61±0.01; 208Pb/204Pbi=38.32±0.10), which are highly enriched in radiogenic Pb in comparison to the northern PMP analogues. The HTiB from southern PMP have initial Pb isotope ratios (average 206Pb/204Pbi=17.45±0.09; 207Pb/204Pbi=15.50±0.01; 208Pb/204Pbi=37.89±0.03) slightly less radiogenic compared with the HTiB from northern PMP. The data cover a large range of isotope compositions, which are accompanied by systematic changes in incompatible trace element ratios and Sr–Nd isotopes, indicating contributions from different mantle sources. The remarkable chemical and isotope differences between PMP basalts, N-MORB and Tristan da Cunha least evolved volcanics indicate that these asthenospheric sources did not play a significant role in the basalt genesis, suggesting generation from the melting of heterogeneous lithospheric mantle sources. The close similarity between the radiogenic isotopes of the Cretaceous carbonatites that surround the PMP and those of the HTiB rock-types and the LTiB from the northern Paraná suggests the involvement of the same mantle components in their genesis: a dominant EMI end member and a radiogenic isotope enriched component of EMII-type, as some phlogopite-peridotite mantle xenoliths (Japecanga) from the Alto Paranaíba Igneous Province. The latter component seems also to have an important role in the origin of the LTiB from the southern Paraná, where the other end member is highly depleted in radiogenic lead similar to DMM.  相似文献   

4.
Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ± 0.12 to 0.83 ± 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ± 0.12 m.y.Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 – 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown.The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression.  相似文献   

5.
Sr- and Pb-isotope compositions and Rb, Sr, Ce, Nd and K2O contents have been determined for the Iblean Mountain and Mt. Etna volcanics in eastern Sicily. Isotope variations within each of these regions have been interpreted as reflecting the heterogeneous nature of the source regions in the upper mantle. The87Sr/86Sr ratios of all these volcanics are less than 0.705, which is taken to indicate that their source regions evolved with lower Rb/Sr ratios than the bulk earth.87Sr/86Sr and Ce/Nd ratios determined in the Mt. Etna tholeiites are positively correlated suggesting that fractionation(s) in Rb/Sr are accompanied by fractionation(s) in light REE in the source regions of these volcanics. Pb-isotope compositions form a linear array in the207Pb/204Pb-206Pb/204Pb plot which has a negative age slope. This array represents either a very recent U/Pb fractionation in the source regions, or a mantle mixing line. Imperfect correlation between the Sr- and Pb-isotope compositions of these volcanics suggests that U/Pb and Rb/Sr have not always increased or decreased in unison during the differentiation of these source regions.  相似文献   

6.
Peter I Øy is located in the Bellinghausen Sea, 400 km NE of Thurston Island, West Antarctica. It is a Pleistocene volcanic island situated adjacent to a former tranform fault on the continental rise of the presently passive margin between the Pacific and Antarctica. New K-Ar age determinations ranging from 0.1 to 0.35 Ma show that the volcanism responsible for this island took place at the same time as post-subduction, rift-related volcanism occurred in the nearby Marie Byrd Land and the Antarctic Peninsula. The rocks of the island are alkalic basalt and hawaiite, benmoreite and trachyte. The basic tocks typically contain phenocrysts of olivine (Fo61–84), diopsidic augite, and plagioclase (ca. An60). Small xenoliths are present and consist of mantle-type spinel lherzolite, cumulate clinopyroxenite and gabbro and felsic inclusions that consist of medium-grained strained quartz, plagioclase, and abundant colorless glass. Chemically, the basic rocks are characterized by rather high MgO (7.8–10.2 wt.%) and TiO2 (3.1–3.7 wt.%) and relatively low CaO (8.4–9.5 wt.%) contents. They have steep REE patterns, [(La/Yb)N = 20] with HREE only 5 x chrondrite. Y and Sc are almost constant at relatively low levels. Compatible trace elements such as Ni and Cr show considerable variation (190–300 and 150–470 ppm, respectively.), whereas V shows only little variation. Sr and Nd isotope ratios vary slightly with 87Sr/86Sr averaging 0.70388 and 143Nd/144Nd 0.512782, both typical for ocean island volcanism. Lead isotope ratios are consistently high in basalts; 206Pb/204Pb = 19.194, 207Pb/204Pb = 15.728 and 208Pb/204Pb = 39.290, whereas benmoreïte is somewhat less radiogenic. Oxygen isotope analyses average δ18O = +6.0‰. Incompatible trace elements vary by a factor of 1.5–2.0 within the range of the basic rocks. It is proposed that the incompatible trace-element variations represent different degrees (<10%) of partial melting, and that these melts were later modified by minor (<15‰) olivine and spinel fractionation. The very small variation in Y (and Sc) and the very fractionated REE pattern indicate that the source had an Y- and HREE-rich residual phase, most probably garnet. Furthermore, it is suggested that the source was slightly hydrous and that melting took place at 18–20 kbar. Trachyte was derived by multiphase fractionation of ne-normative basalts, and benmoreite from hy-normative parental liquids. The rocks of Peter I Øy are generally of the same type and age as those outcropping in extensional regimes on the nearby continent, and therefore, these occurrences may be related to each other in some way. However, the Peter I Øy rocks are considerably more radiogenic in strontium and less radiogenic in neodymium than the rocks of the Antarctic Peninsula and Marie Byrd Land. Possible explanations are that Peter I Øy represent asthenospheric hot spot activity, or transtensional rifting as subduction ceased.  相似文献   

7.
Five nodules of eclogite, one nodule of garnet peridotite and one sample of kimberlite from the Roberts Victor mine were analyzed for concentrations of U, Th, Pb, Rb and Sr and isotopic compositions of Pb and Sr. In the eclogites, U content ranges from 0.09 to 0.26 ppm, Th from 0.35 to 1.1 ppm, Pb from 0.79 to 5.5 ppm, Rb from 2.1 to 28 ppm and Sr from 133 to 346 ppm;206Pb/204Pb ratios range from 14.8 to 18.5,207Pb/204Pb from 14.9 to 15.7,208Pb/204Pb from 35.2 to 38.5. The garnet peridotite contains 0.22 ppm U, 0.97 ppm Th, 1.05 ppm Pb, 6.9 ppm Rb and 108 ppm Sr and the kimberlite contains 2.5 ppm U, 30 ppm Th, 37 ppm Pb, 113 ppm Rb and 2040 ppm Sr. The lead in the eclogites has two components, a lead pyroextractable at 1100–1200° and a non-pyroextractable residual lead. In three of the eclogites, which are to some extent altered, a proportion of the pyroextractable lead may be contaminating lead from the kimberlite, but an altered kyanite eclogite does not appear to be contaminated by this same kimberlite. The pyroextractable lead from a less altered eclogite contains a much larger proportion of206Pb. Compositions calculated for the residual leads vary greatly. In many of the pyroextraction runs the primary eclogitic phases disappeared and the new phases plagioclase, clinopyroxene and a magnetic iron compound were formed. Why part of the lead should have been retained by these new phases is not understood.  相似文献   

8.
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40–60 m.y.), the Palau-Kyushu Ridge (29–44 m.y.) and the Parece Vela and Shikoku basins (17–30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr= 0.7026−0.7032, 143Nd/144Nd= 0.51300−0.51315, and 206Pb/204Pb= 17.8−18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr= 0.7038−0.7040, 143Nd/144Nd= 0.51285−0.51291 and 206Pb/204Pb= 18.8−19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have δ207Pb values of 0 to +6 and δ208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr= 7032−0.7035, 143Nd/144Nd= 0.51308−0.51310 and 206Pb/204Pb= 18.4−18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc.At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 [31]) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 [31]). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb [31]). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.  相似文献   

9.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

10.
New isotopic analyses are presented for 3 plagioclase-rich fractions and one mafic fraction from ferroan anorthosite 60025. The observed206Pb/204Pb ratios vary between 52.5 and 60.5, all much higher than the ratio for terrestrial contamination. In a207Pb/206Pb204Pb/206Pb correlation diagram, the plagioclase data define a model PbPb age of 4.520 ± 0.007 AE using meteoritic primordial lead for the non-radiogenic component. In the concordia diagram the plagioclase data yield intersections at 4.503 ± 0.007 and 0.28 AE. The meaning of the lower intercept is obscure. The earlier 60025 analysis of Tera and Wasserburg [1], with an observed206Pb/204Pb of 23.0, agrees closely with the new plagioclase data in the isotope correlation and concordia diagrams. Since the apparent age does not correlate with the206Pb/204Pb ratios and U contents of the samples, it does not appear to be controlled by terrestrial lead contamination. The time-averaged μ values for the plagioclase leads are exceptionally low, 16–55, and agree within factors of 2 with the observed μ values in the samples. These are much lower than the values observed for mafic rocks or their sources, showing that the anorthosite lead has never been associated for a substantial length of time with any high μ source. In this way the 60025 data differ substantially from UPb data for two other lunar anorthosites, 15415 and 60015. The results suggest that the averaged model Pb ages of 4.51 ± 0.01 AE closely approximate the crystallization age for the plagioclase fraction of the anorthosite, and that it dates back to an early phase in lunar history. One sample from the mafic fraction of 60025 yields a younger model Pb age of 4.42 AE. The age may have been lowered by post-crystallization disturbances or perhaps this fraction is not coeval with the plagioclase fraction.  相似文献   

11.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   

12.
Many researchers have focused on the tectonic evolution of North Qilian Mountains (NQM) since the 1970s[1―7]. However, the tectonic affinity of the an- cient oceanic mantle in early Paleozoic remains in de-bate. Three general explanations for it have been pro- posed. The first one suggests that the ancient ocean was a part of Proto-Tethys, and the tectonic evolution of NQM should be regarded as a portion of the562 Science in China: Series D Earth Sciences Tethyan tectonic domain[1]. …  相似文献   

13.
Extensive Upper Cretaceous volcanism in southern Madagascar was fed in part by mantle sources resembling those expressed today in the Indian Ocean at Marion and Prince Edward islands and on the central Southwest Indian Ridge. In addition, very low εNd(T) (to −17.4), high(87Sr/86Sr)T (to 0.72126) tholeiites in southwestern Madagascar were variably but highly contaminated by ancient continental material broadly like that affecting the Bushe and Poladpur Formations of the later Deccan Traps in India. Alkalic dikes in southwestern Madagascar have a rough analogue in the Mahabaleshwar Formation of the Deccan, in that they document the influence of a low 206Pb/204Pb, negative εNd, relatively low 87Sr/86Sr reservoir. A very similar reservoir is manifested at present in mid-ocean ridge basalts on the central Southwest Indian Ridge near 40°E. The original location of this end-member appears likely to have been in the Madagascan lithospheric mantle, a portion of which may have been removed in the Middle Cretaceous by the action of the Marion hotspot or the rifting of Indo-Madagascar. An origin within the hotspot itself also may be possible; however, recent products of the hotspot appear to lack completely the necessary low 206Pb/204Pb, low εNd signatures.  相似文献   

14.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

15.
Tholeiitic basalts and sulfide deposits from the “Cyana” and “Alvin” diving programs (RITA project) on the East Pacific Rise were analyzed for Pb and Sr isotopes. The basalt data plot within the field defined previously by other East Pacific Rise basalts (206Pb/204Pb: 18.35–18.58;207Pb/204Pb: 15.48–15.53;208Pb/204Pb: 37.8–38.1;87Sr/86Sr: 0.7022–0.7025). Pb, U and Sr contents (~0.5, ~0.05 and ~110 ppm, respectively) and μ values (~6) are typical of MORB, whereas Th/U ratios (~3.5) are significantly higher.The Pb isotopic ratios of the sulfide samples are very homogeneous (206Pb/204Pb~18.47207Pb/204Pb~15.49208Pb/204Pb~37.90), and plot in the middle of the basalt field. This indicates that (1) the sulfide Pb was derived from the basaltic crust without any significant contribution from either seawater or hemipelagic sediments, and (2) the solutions from which the sulfides were deposited had uniform Pb isotopic composition. The Pb contents of three sulfide samples is relatively high (170–1310 ppm).The Sr contents of five sulfide samples are widely scattered from 12 to 210 ppm, with87Sr/86Sr ratios intermediate between basaltic and seawater values (0.70554±0.00005 to0.70795±0.00011). Leaching experiments show that both basalt-derived Sr and seawater Sr were present in the solutions which deposited the sulfides. In some cases, Sr was also adsorbed from seawater onto the sulfides following their deposition. Basalt-derived Sr and seawater Sr are also present in associated non-sulfide phases.  相似文献   

16.
The nitrogen isotope geochemistry of 15 basaltic glasses has been investigated using stepped heating and high sensitivity static vacuum mass spectrometry. At low temperature (< 600°C) the glasses release small amounts of nitrogen with δ15NAIR, averaging −0.3‰, suggesting surficial adsorption of atmospheric nitrogen. At high temperature, usually with a maximum at 1000°C, indigenous nitrogen with a concentration ranging from 0.2 to 2.1 ppm is released. The δ15N values of this high temperature release show a wide range from −4.5‰ to +15.5‰. There is no correlation between N ppm and δ15N, and the samples apparently form 3 groups with distinctive δ15N. Six MORB glasses from the Mid-Atlantic Ridge, East Pacific Rise and Juan de Fuca Ridge define a group with δ15N = +7.5 ± 1.3‰. In contrast two Indian Ocean MORB glasses (Carlsberg Ridge and Gulf of Aden) gave negative δ15N averaging −3.2‰. Glasses from Loihi Seamount have high δ15N averaging +14.0 ± 1.0‰. Comparison of the δ15N data with the mantle models derived from helium and argon isotope studies suggests that the wide range in δ15N may reflect in part heterogeneities in the mantle related to its degassing history. It is possible, however, that magmatic degassing processes have also affected nitrogen isotopic compositions, and the data cannot yet be unambiguously interpreted in terms of source variations.  相似文献   

17.
The Tadhak alkaline ring-complex of Permian age provides two whole rock UPb isochrons giving concordant ages in agreement within relative errors with the RbSr isochron age:235U207Pb isochron: 271 ± 32Ma(MSWD= 0.3);238U206Pb isochron: 254 ± 18Ma(MSWD= 7.8), both on 8 whole-rock samples. The existence of these isochrons indicates that in favorable conditions U (and Pb) can be immobile. This can be due either to the lack of hard oxidizing conditions and/or to the location of U, in very low concentrations, in weathering-resistant minerals. The initial ratios (206Pb/204Pb = 18.714 ± 70and207Pb/204Pb = 15.589 ± 16), corrected for their Permian age, lie in the range observed for oceanic island basalts or continental alkali basalts and indicate an origin in a similar mantle, without any significant crustal contamination. This was also suggested by the initial87Sr/86Sr ratio of 0.70457 ± 4. Moreover, these Sr and Pb isotopic characteristics belong to the field of the so-called “Dupal” anomaly and indicate that it existed already 270 Ma ago. This study shows the potential interest of isotopic investigations of within-plate alkaline ring-complexes to characterize subcontinental mantle compositions, particularly in the past.  相似文献   

18.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   

19.
The composition of basalts erupted at the earliest stages in the evolution of a back-arc basin permit unique insights into the composition and structure of the sub-arc mantle. We report major and trace element chemical data and O-, Sr-, Nd-, and Pb- isotopic analyses for basalts recovered from four dredge hauls and one ALVIN dive in the northern Mariana Trough near 22°N. The petrography and major element chemistry of these basalts (MTB-22) are similar to tholeiites from the widest part of the Trough, near 18°N (MTB-18), except that MTB-22 have slightly more K2O and slightly less TiO2. The trace element data exhibit a very strong arc signature in MTB-22, including elevated K, Rb, Sr, Ba, and LREE contents; relatively lowK/Ba and highBa/La andSr/Nd. The Sr- and Nd- isotopic data plot in a field displaced from that of MTB-18 towards Mariana arc lavas, and the Pb-isotopic composition of MTB-22 is indistinguishable from Mariana arc lavas and much more homogeneous than MTB-18. Mixing of 50–90% Mariana arc component with a MORB component is hypothesized. We cannot determine whether this resulted from physical mixing of arc mantle and MORB mantle, or whether the arc component is introduced by metasomatism of MORB-like mantle by fluids released from the subducted lithosphere. The strong arc signature in back-arc melts from the Mariana Trough at 22°N, where the back-arc basin is narrow, supports general models for back-arc basin evolution whereby early back-arc basin basalts have a strong arc component which diminishes in importance relative to MORB as the back-arc basin widens.  相似文献   

20.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号