首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
本文运用图论、矩阵分析和现代控制理论等工具, 研究信息网络传输下多智能体系统的协调控制和动力学行为. 假设每个智能体通过数字化网络传感器获得其邻近智能体的位置状态,而且多智能体系统采取分布式线性控制协议. 每个智能体被描述为一个简单的采样系统,多智能体系统转化为混合动力学系统. 研究结果表明,多智能体系统所呈现的渐近聚集、周期振荡和发散动力学行为不仅和网络结构的代数特征有关, 而且和每个智能体的动力学方程、采样周期有关. 本文给出了具体精确的代数判据. 仿真例子进一步验证了本文结果的有效性.  相似文献   

2.
研究了一类具有双面约束单点摩擦的单自由度多体系统动力学方程的算法问题.首先给出了系统的动力学方程,该方程具有很强的非光滑性,不能应用已有的一些光滑系统的数值方法研究系统的动力学特性.因此,本文利用方程的特点和所求变量的物理含义,给出了一种简便的数值计算方法.该方法的计算效率和精度与迭代法相比均较高.  相似文献   

3.
基于最大反馈线性化的TORA系统非奇异镇定控制   总被引:1,自引:0,他引:1  
针对TORA系统的镇定控制问题,提出一种基于最大反馈线性化的非奇异控制器设计方案.应用拉格朗日方程建立TORA系统的数学模型,采用微分代数方法计算TORA系统中具有最大相对阶的虚拟输出函数,以此为基础通过反馈线性化将TORA的数学模型转化为具有稳定内动态的三阶线性系统,采用极点配置方案为TORA系统设计镇定控制器.为了解决控制律中存在的奇异值问题,采用梯度动力学方法对控制器进行调整.最后通过仿真分析验证基于最大反馈线性化的控制方案的有效性.  相似文献   

4.
针对一类连续时间线性Markov跳变系统,本文提出了一种新的策略迭代算法用于求解系统的非零和微分反馈Nash控制问题.通过求解耦合的数值迭代解,以获得具有线性动力学特性和无限时域二次成本的双层非零和微分策略的Nash均衡解.在每一个策略层,采用策略迭代算法来计算与每一组给定的反馈控制策略相关联的最小无限时域值函数.然后,通过子系统分解将Markov跳变系统分解为N个并行的子系统,并将该算法应用于跳变系统.本文提出的策略迭代算法可以很容易求解非零和微分策略所对应的耦合代数Riccati方程,且对高维系统有效.最后通过仿真示例证明了本文设计方法的有效性和可行性.  相似文献   

5.
动力学系统实时仿真数值方法研究   总被引:3,自引:0,他引:3  
从6个方面概述动力学系统实时仿真数值方法的一些最近的研究进展,内容包括:产时仿真快速混合算法、实时并行Rosenbrock算法、实时并行组合算法、微分代数系统的实时算法与实时并行算法、实时间断处理并行算法以及一些并行算法的效率分析等。给出构造实时仿真算法新的思想和方法,同时也涉及一些有关问题的讨论。  相似文献   

6.
多体系统多点碰撞接触问题的数值求解方法   总被引:2,自引:2,他引:2       下载免费PDF全文
多体系统多点接触碰撞问题可以归结为一个将系统的动力学方程与并协性约束方程相结合的问题.针对这样一个含并协性条件的混合方程组,建立了基于 LCP 格式的包含碰撞/接触问题的多刚体系统动力学分析框架,提出了一种基于步长评价准则的变时间步长的数值求解策略,实现了无摩擦情况下多刚体系统多点接触碰撞问题的数值算法.最后给出了数值算例,验证了算法的有效性.  相似文献   

7.
针对物理系统性能仿真形成的非连续高指标微分代数模型,提出一种基于加权二部图的指标转换方法.该方法将微分代数系统表示为加权二部图,基于二部图匹配算法可以判定微分代数系统是否为高指标系统.对于高指标系统,采用文中方法可以找出需要求导的最小结构奇异方程子集,以便将高指标系统转换为低指标形式.最后,针对定结构与变结构的非连续微分代数模型给出了相应的指标分析策略.文中策略与相关算法已在基于Modelica语言的建模仿真平台MWorks上实现.  相似文献   

8.
研究了运动约束面含摩擦多体系统动力学方程的建立和算法问题.首先利用第一类Lagrange方程给出了系统的动力学方程,并以矩阵形式给出了这类系统摩擦力的广义力的一般表达式.为便于摩擦力和铰链约束力的分析与计算,采用笛卡尔坐标和约束方程的局部方法,使得系统的约束力与Lagrange乘子一一对应.应用增广法将微分一代数方程组转化为常微分方程组并用分块矩阵的形式给出,以便于方程的编程与计算,提高计算效率.最后用一个算例验证了该方法的有效性.  相似文献   

9.
基于多体系统动力学微分/代数方程数学模型和通用积分形式的目标函数,建立了多体系统动力学设计灵敏度分析的伴随变量方法,避免了复杂的设计灵敏度计算,对于设计变量较多的多体系统灵敏度分析具有较高的计算效率.文中给出了通用公式以及具体的计算过程和验证方法,并将目标函数及其导数积分形式的计算转化为微分方程的初值问题,进一步提高了计算效率和精度.文末通过一曲柄-滑块机构算例对算法的有效性进行了验证.  相似文献   

10.
多体系统动力学数值解法   总被引:6,自引:0,他引:6  
王国平 《计算机仿真》2006,23(12):86-89
多体系统动力学研究的主要内容动力学建模与数值解法是多体系统动力学研究的主要内容之一。对多体系统动力学方程及其动力学数值解法的研究成果进行了较为全面的阐述。多体系统动力学及动力学方程进行了简单的归纳和总结,多体系统动力学数值求解,特别是刚柔耦合多体系统微分/代数方程的数值解法等研究热点进行了详细的阐述,并简要展望了多体系统动力学数值解法今后的发展趋势,为多体系统动力学计算机仿真奠定了基础。  相似文献   

11.
12.
针对一类多体动力学问题导出的微分-代数方程,提出一种保能量、保约束的算法.该算法基于祖冲之类方法和欧拉中点保辛差分,利用祖冲之类方法保证在时间格点上精确满足约束方程,避免约束违约问题;并进一步证明该算法在时间格点上可以精确保能量.数值算例进一步验证该算法的可靠性.  相似文献   

13.
On the optimal scaling of index three DAEs in multibody dynamics   总被引:1,自引:0,他引:1  
We propose a preconditioning strategy for the governing equations of multibody systems in index-3 differential-algebraic form. The method eliminates the amplification of errors and the ill-conditioning which affect numerical solutions of high index differential algebraic equations for small time steps. We develop a new theoretical analysis of the perturbation problem and we apply it to the derivation of preconditioners for the Newmark family of integration schemes. The theoretical results are confirmed by numerical experiments.  相似文献   

14.
On the constraints violation in forward dynamics of multibody systems   总被引:1,自引:0,他引:1  
It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton–Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical solution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as a function of the Moore–Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian, and the coordinate partitioning method.  相似文献   

15.
During numerical forward dynamics of constrained multibody systems, a numerical violation of system kinematical constraints is the important issue that has to be properly treated. In this paper, the stabilized time-integration procedure, whose constraint stabilization step is based on the projection of integration results to underlying constraint manifold via post-integration correction of the selected coordinates is discussed. A selection of the coordinates is based on the optimization algorithm for coordinates partitioning. After discussing geometric background of the optimization algorithm, new formulae for optimized partitioning of the generalized coordinates are derived. Beside in the framework of the proposed stabilization algorithm, the new formulae can be used for other integration applications where coordinates partitioning is needed. Holonomic and non-holonomic systems are analyzed and optimal partitioning at the position and velocity level are considered further. By comparing the proposed stabilization method to other projective algorithms reported in the literature, the geometric and stabilization issues of the method are addressed. A numerical example that illustrates application of the method to constraint violation stabilization of non-holonomic multibody system is reported. An erratum to this article can be found at  相似文献   

16.
Y. Bai 《Computing》1992,49(2):139-150
The Lobatto collocation method is modified for efficiently solving linear boundary value problems of differential-algebraic equations with index 1. The stability and superconvergence of this method are established. Numerical implementations are discussed and a numerical example is given.  相似文献   

17.
Multibody systems are frequently modeled as constrained systems, and the arising governing equations incorporate the closing constraint equations at the acceleration level. One consequence of accumulation of integration truncation errors is the phenomenon of violation of the lower-order constraint equations by the numerical solutions to the governing equations. The constraint drift usually tends to increase in time and may spoil reliability of the simulation results. In this paper a comparative study of three methods for constraint violation suppression is presented: the popular Baumgarte’s constraint violation stabilization method, a projective scheme for constraint violation elimination, and a novel scheme patterned after that proposed recently by Braun and Goldfarb [D.J. Braun, M. Goldfarb, Eliminating constraint drift in the numerical simulation of constrained dynamical systems, Comput. Meth. Appl. Mech. Engrg., 198 (2009) 3151–3160]. The methods are confronted with respect to simplicity in applications, numerical effectiveness and influence on accuracy of the constraint-consistent motion.  相似文献   

18.
A numerical algorithm for conducting coupled system dynamical simulation is presented. The interconnected system, comprising numerous modules, is treated as a constrained multibody dynamics system. Of particular focus is the efficient solution of coupled system simulation without sacrificing the independence of the separate dynamical modules. The proposed algorithm, Maggi’s equations with perturbed iteration (MEPI) emanates from numerical methods for differential-algebraic equations. Separate treatment of the constraint equations from the resolution of subsystem dynamical responses marks MEPI’s main characteristic.  相似文献   

19.
The present work deals with energy consistent time stepping schemes for finite-dimensional mechanical systems with holonomic constraints. The proposed procedure is essentially based upon the following steps: Firstly, the index three differential-algebraic equations corresponding to the constrained mechanical system are directly discretized. Secondly, the discrete Lagrange multipliers are eliminated by using a discrete null space matrix. In many cases it is feasible to further reduce the number of unknowns by employing specific reparametrizations. The proposed method entails a number of advantageous features such as size-reduction and improved conditioning of the resulting system of algebraic equations. It is shown that the newly developed method is well-suited for both open-loop and closed-loop multibody systems.  相似文献   

20.
A computational methodology for analysis of spatial flexible multibody systems, considering the effects of the clearances and lubrication in the system spherical joints, is presented. The dry contact forces are evaluated through a Hertzian-based contact law, which includes a damping term representing the energy dissipation. The frictional forces are evaluated using a modified Coulomb’s friction law. In the case of lubricated joints, the resulting lubricant forces are derived from the corresponding Reynolds’ equation. An absolute nodal formulation is utilized in flexible body formulation. The generalized-α method is used to solve the resulting equations of motion. The effectiveness of the methodology is demonstrated by two numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号