首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanum oxysulfide (La2O2S) was investigated as infrared transparent ceramic to benefit from stronger chemical bonds and superior mechanical performances to that of non-oxide benchmark infrared materials. La2O2S ceramics were processed by hot-pressing powders prepared by combustion synthesis followed by a sulfurization treatment. Powders and ceramics were characterised through various techniques (XRD, UV-Vis-IR spectroscopy, particle size analysis, SEM, Impulse Excitation Technique, microhardness and fracture toughness tests) to assess their purity, study their microstructure and determine their optical and mechanical properties. The study reports the first IR transmission spectra, Poisson’s ratio, Young’s and shear moduli and fracture toughness values of La2O2S polycrystalline ceramics. The ceramics showed transparency in the 2–11 µm range and their mechanical performances were all superior to that of commercial infrared ceramics. The best transmission (89% of the theoretical transmission) was measured at 7.3 µm for 1 mm-thick ceramics hot-pressed at 1200–1250 °C.  相似文献   

2.
《Ceramics International》2023,49(7):10936-10945
Pyrochlore-type La2Zr2O7 (LZ) is a promising candidate for high-temperature thermal barrier coatings (TBCs). However, its thermal expansion coefficient and low fracture toughness are not optimal for such application and thus, need to be improved. In this study, we systematically report the effect of CeO2 addition on phase formation, oxygen-ion diffusion, and thermophysical and mechanical properties of full compositions La2(Zr1?xCex)2O7 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1). La2(Zr1?xCex)2O7 exhibits a pyrochlore structure at x ≤ 0.3, while a fluorite structure is observed outside this range. With the increase in CeO2 content, thermal expansion coefficient and oxygen-ion diffusivity in La2(Zr1?xCex)2O7 are increased. Oxygen-ion diffusivity of La2(Zr1?xCex)2O7 is two orders of magnitude less than that of classical 8YSZ. Among La2(Zr1?xCex)2O7 compounds, La2(Zr0.7Ce0.3)2O7 and La2(Zr0.5Ce0.5)2O7 exhibit relatively low oxygen diffusivities. The composition La2(Zr0.5Ce0.5)2O7 presents the lowest thermal conductivity due to the strongest phonon scattering and also the highest fracture toughness due to the solid-solution toughening. The highest sintering resistance is achieved by the composition La2(Zr0.7Ce0.3)2O7 because of its ordered pyrochlore structure and high atomic mass of Ce. Based on these results, the compositions La2(Zr0.5Ce0.5)2O7 and La2(Zr0.7Ce0.3)2O7 are alternatives for classical 8YSZ for TBC materials operating at ultrahigh temperatures.  相似文献   

3.
Lu2-xCexTi2O7 (LCTO) pyrochlores were irradiated by 400 keV Ne2+ with fluences (dose) of up to 5 × 1015 ions/cm2 (1.875 dpa). The detailed damage process was investigated by combining grazing incident angle X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Subsequent to the 2% volume swelling at a fluence of 1 × 1014 ions/cm2 (0.037 dpa), the initially swollen LCTO pyrochlore formed both a disordered fluorite phase and a nanocrystalline pyrochlore phase at a fluence of 5 × 1014 ions/cm2 (0.185 dpa). At higher fluences, the fluorite phase diminished as amorphous domains increased in volume when the dose reached a fluence of 1 × 1015 ions/cm2 (0.371 dpa), while the nanocrystalline pyrochlore phase persisted. At the highest fluence of 5 × 1015 ions/cm2 (1.854 dpa), the amorphous fraction decreased, meanwhile the degree of crystallinity of nanocrystalline pyrochlore phase was enhanced, as evidenced by the increased intensity of superlattice diffraction maxima. The phase transformation and recrystallization can be explained by the release of strain in irradiation-induced swollen pyrochlore crystallites. The evolution of the damage process is mainly driven by the differences in the Gibb's free energies of fluorite phase as compared with the pyrochlore phase as a function of grain size. We have demonstrated that ion beam techniques can be used to manipulate the phase stability and crystallite size of pyrochlore. These results provide the basis for tailoring the mechanical strength and response of pyrochlores to extreme radiation environments.  相似文献   

4.
A series of ceramic samples were prepared to experimentally investigate sub-solidus phase relations in the La2O3-Sm2O3-ZrO2 system at 1873 K and 1673 K. No ternary compounds have been observed, while the binary La2Zr2O7 and Sm2Zr2O7 pyrochlore phases form a continuous solid solution La2?xSmxZr2O7 in the ternary system at the selected temperatures. X-ray diffraction and microstructure results demonstrated that the pyrochlore phase is stable in the ZrO2-rich corner. The homogeneity range of the pyrochlore phase was carefully determined and the phase boundary of the cubic ZrO2 (fluorite phase) which extends into the ternary system was also constructed via electron probe microanalysis. The as-obtained data were adopted to determine the mixing parameters for the pyrochlore and fluorite phases in the present thermodynamic modeling. A self-consistent database of the La2O3-Sm2O3-ZrO2 system was accordingly established for the first time and the calculations agree well with the experimental data in the current work.  相似文献   

5.
Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7 (LZO) and La2Hf2O7 (LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ ions. Based on our earlier work, LHO-based nanophosphors display higher photo- and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO-based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+ transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+-doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+ doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays.  相似文献   

6.
The high refractive index La2O3–TiO2–Nb2O5 glasses were prepared by containerless processing, and the glass‐forming region was determined. The refractive index showed the range from 2.20 to 2.32, and the values were much higher than those of most optical glasses. The completely miscible 30LaO3/2–(70?x)TiO2xNbO5/2 (0 ≤ ≤70) system was fabricated to study the compositional dependence of refractive index and optical transmittance. The crucial determinants of the refractive index of oxide glasses, oxygen molar volume, and electronic polarizability of oxygen ions were calculated. The principle of additivity of glass properties was suitable for the calculation of refractive index between glass and compositional oxides. All the glasses were colorless and transparent in the visible to 6.5 μm middle infrared (MIR) region. These results are useful for designing new optical glasses with high refractive index and low wavelength dispersion in wide optical window.  相似文献   

7.
Y2Ti2−xSnxO7 (x = 0–2) pyrochlore sodium aluminoborosilicate glass–ceramics (GCs) are produced by calcining the pelletized Y–Ti–Sn oxide mixture and glass precursor at 1200 or 1300°C for 4 h. The metal oxide mixture is prepared by a soft chemistry route. X-ray diffraction, Raman spectroscopy, and electron microscopy are employed to investigate the formation of pyrochlore GCs and local crystal structures. Near phase pure Ti-rich pyrochlores are produced with minor phase SnO2 observed for Sn-rich materials. The cell parameters of the pyrochlore structures refined by Le Bail fitting are in good agreement with the published data and increase linearly with the gradual increment of Sn substitution. With progressively increasing Sn proportion on pyrochlore B-site, Raman characteristic bands of the pyrochlore structure become sharper and well defined. The Raman A1g peak position and its full width at half-maximum are linearly progressed with increasing x (Sn). The presence of the melting glass facilitates the pyrochlore formation, with ceramic grain sizes ranging from submicron to microns. Transmission electron microscopy and selected area electron diffraction observations indicate the sample possesses a relatively high crystallographic perfection at the atomic level. This new series of pyrochlore GCs and the method disclosed herein may pave the way for further materials development as potential nuclear waste forms.  相似文献   

8.
La2Ce2O7 with low thermal conductivity as a potential candidate of thermal barrier coatings (TBCs) was co-doped with (Ca, Fe) or (Sr, Mn) in order to further improve its thermal radiation at high temperatures. The microstructure, chemical composition, infrared emission properties (reflection and absorption properties) and thermal cycling lifetime of the coatings were respectively investigated. The results revealed that La2-xCaxCe2-xFexO7+δ and La2-xSrxCe2-xMnxO7+δ coatings had defected fluorite structure and their infrared emittances were much higher than that of the parent La2Ce2O7. The superior infrared emission could be ascribed to the enhancement of the intrinsic absorption (electron transition absorption), free-carrier absorption and impurity absorption as well as lattice vibration absorption. However, the thermal cycling lifetime of La2Ce2O7 coatings presented a reduction after the (Ca, Fe) or (Sr, Mn) substitution, primarily due to the decrease in the fracture toughness and the increase in the thermal conductivity.  相似文献   

9.
Via vacuum sintering, 2 mol% uranium-doped LaxGd2−xZr2O7 (x = 2, 1.6, 1, and 0.4) transparent ceramics with Ca2+ as charge compensator was first fabricated by solid-state reaction. X-ray diffraction results of as-prepared powders and ceramic samples demonstrate that the phase transition from defective fluorite to pyrochlore occurs with the increase of x. Optical in-line transmittance spectrum shows that four ceramic samples have good in-line transmittance (nearly 80% from 700 to 2200 nm), especially the U:La1.6Gd0.4Zr2O7 ceramics. The cut-off wavelength of four U-doped transparent ceramics shifted from 250 to near 460 nm, and it is believed that such phenomenon is related to the stable existence form of uranium in ceramics lattices. Observing the excitation emission spectra, the main excitation peaks of four ceramic samples are located at 458 nm, and the main emission peaks are located around 513 nm. In addition, there are low-intensity emission peaks around 520, 537, and 566 nm, and the related explanation is given in combination with the U6+ ion energy level diagram. Thus, uranium-doped LaxGd2−xZr2O7 transparent ceramics have potential for novel neutron detection materials.  相似文献   

10.
First-principle calculations are performed using VASP to enhance the understanding of the electronic structure of stoichiometric LaSi3N5 and Ce-doped LaSi3N5. Electronic structure and band gaps are calculated using DFT and the screened Coulomb hybrid functional HSE06. Five doping schemes are investigated: La3+/*Ce3+, La3+/□ (□ = cation vacancy), La3+/Ce3+, La3+/Ce2+ compensated by one framework N3−/O2− substitution, and combined La3+/Ce3+and La3+/□ substitutions. The vacancy is electronically balanced by N3−/O2− substitutions. Two pseudopotential files for CeIII are used to investigate the effect of f orbitals on the calculated band gap. There was no change in the calculated value of the band gap using DFT method for the *CeIII doped LaSi3N5 compared to the stoichiometric LaSi3N5 (3.15 eV). HSE06 provided more precise band gaps. The calculated band gap of Ce-doped LaSi3N5 is 4.65 eV with the possible electronic transitions from Ce spin-up 4f to Ce spin-up 4f states, or La 5d states..  相似文献   

11.
Material with superior damage tolerance, chemical durability, and structure stability is of increasing interest in high-level radioactive waste management and structural components for advanced nuclear systems. In this paper, high-entropy (La0.2Ce0.2Nd0.2Sm0.2Gd0.2)2Zr2O7 with pyrochlore-type structure was synthesized through conventional solid-state method. The as-synthesized high-entropy oxide maintained crystalline after being irradiated by using Au3+ with 9.0 MeV energy at the fluence of 4.5 × 1015 ions·cm-2, indicating its high tolerance to heavy-ion irradiation. The irradiation-induced order-disorder transition from pyrochlore structure to defective fluorite structure occurred in high-entropy (La0.2Ce0.2Nd0.2Sm0.2Gd0.2)2Zr2O7. After irradiation, no irradiation-induced segregation was observed at grain boundary. Moreover, the mechanical properties of high-entropy pyrochlore were improved. The heavy-ion irradiation resistance mechanisms of high-entropy pyrochlore were discussed in detail. Our work identified high-entropy (La0.2Ce0.2Nd0.2Sm0.2Gd0.2)2Zr2O7 can be a promising candidate for immobilization of high-level radioactive waste as well as advanced nuclear reactor system from the perspective of irradiation resistance.  相似文献   

12.
《Ceramics International》2017,43(5):4508-4512
Chalcogenide glasses of 65GeS2–(25–x)Ga2S3–10AgI–xLa2S3 (x=0, 1, 3, and 5 mol%) were fabricated through the traditional melt-quenching method. The effects of addition of La2S3 on physical, thermal and optical properties of the glass system were investigated. The results showed that the fabricated glasses possess considerably high glass transition temperature, exhibit improved mechanical property and excellent infrared transmission. A redshift at the visible absorbing cut-off edge is observed with increasing of La2S3 content. The direct and indirect optical band gap values are also calculated. Raman spectra analysis indicated that the band at 265 cm−1 decreased in amplitude and a new peak at 230 cm−1 was detected manifesting the formation of La-S bond in the network. In addition, the mid-infrared emission at 3.74 µm of the glasses doped with Tm3+ ions was achieved. The results indicated that the glasses are promising materials for mid-infrared applications such as imaging, remote sensing and lasers.  相似文献   

13.
In this report, effect of enhanced rare earth (La2O3) concentration on substitution of TeO2 within ternary TeO2‐TiO2‐La2O3 (TTL) glass system has been studied with respect to its thermal, structural, mechanical, optical, and crystallization properties with an aim to achieve glass and glass‐ceramics having rare‐earth‐rich crystalline phase for nonlinear optical and infrared photonic applications. DSC analysis (10°C/min) demonstrates a progressive increase in glass‐transition temperature (Tg) from 359 to 452°C with the increase in La2O3 content. Continuous glass network modification with transformation of [TeO4] to [TeO3/TeO3+1] units is evidenced from Raman spectra which is corroborated with XPS studies. While mechanical properties demonstrate enhancement of cross‐linking density in the network. These glasses exhibit optical transmission window extended from 0.4 to 6 μm with calculated zero dispersion wavelength (λZDW) varying from 2.41 to 2.28 μm depending upon La2O3 content. Crystallization kinetics of TTL10 (80TeO2‐10TiO2‐10La2O3 in mol%) glass has been studied via established models. Activation energy (Ea) has been evaluated and dimensionality of crystal growth (m) suggests formation of surface crystals. Glass‐ceramic with crystalline phase of La2Te6O15 has been realized in heat‐treated TTL10 glass samples (at 450°C). As predicted from DSC analysis, FESEM study unveils the formation of surface crystallized glass‐ceramics.  相似文献   

14.
Glasses in the 30La2O3-40TiO2-30Nb2O5 system are known to have excellent optical properties such as refractive indices over 2.25 and wide transmittance within the visible to mid-infrared (MIR) region. However, titanoniobate glasses also tend to crystallize easily, significantly limiting their applications in optical glasses due to processing challenges. Therefore, the 30La2O3-40TiO2-(30−x) Nb2O5-xAl2O3 (LTNA) glass system was successfully synthesized using a aerodynamic containerless technique, which improves glass thermal stability and expands the glass-forming region. The effects of Al2O3 on the structure, thermal, and optical properties of base composition glasses were investigated by XRD, DSC, NMR, Raman spectroscopy, and optical measurements. DSC results indicated that as the content of Al2O3 increased, the thermal stability of the glasses and glass-forming ability increased, as the 30La2O3-40TiO2-25Nb2O5-5Al2O3 (Nb-Al-5) glass obtained the highest ΔT value (103.5°C). Structural analysis indicates that the proportion of [AlO4] units increases gradually and participates in the glass network structure to increase connectivity, promoting more oxygen to become bridging oxygen and form [AlO4] tetrahedral linkages to [TiO5] and [NbO6] groups. The refractive index values of amorphous glasses remained above 2.1 upon Al2O3 substitution, and a transmittance exceeding 65% in the visible and mid-infrared range. The crystallization activation energies of 30La2O3-40TiO2-30Nb2O5 (Nb-Al-0) and Nb-Al-5 glasses were calculated to be 611.7 and 561.4 kJ/mol, and the Avrami parameters are 5.28 and 4.96, respectively. These results are useful to design new optical glass with good thermal stability, high refractive index and low wavelength dispersion for optical applications such as lenses, endoscopes, mini size lasers, and optical couplers.  相似文献   

15.
The glass-forming region of a BaO-La2O3-Ga2O3 ternary system was confirmed and BaF2-BaO-La2O3-Ga2O3 new oxyfluoride glasses were prepared by a containerless processing. We also analyzed the physical, thermal, and optical properties of new oxide and oxyfluoride glasses. The direct effects of the substitution of oxygen by fluorine and the effect of BaO and La2O3 on the refractive index and Abbe number were discussed on the basis of electronic polarizability and resonance wavelength of oscillator. The refractive indices increased with increasing La2O3 concentration because La2O3 increased the electronic polarizabilities. Abbe number increased with increasing BaO and fluorine concentration because of the decrease in resonance wavelength of oscillator. By the combination of the BaO, La2O3, and fluorine in the gallate glass system, we could obtain novel oxide and oxyfluoride glasses with high refractive index (1.81-1.95) and high Abbe number (31-55). The absorption edge in UV region shifted to the shorter wavelength and IR cut-off wavelength shifted to the longer wavelength with increasing fluorine. Therefore, wide transparent glass was obtained from 262 nm to 11.3 μm.  相似文献   

16.
We first report the novel Ce3+-activated and Lu3+-stabilized gadolinium aluminate garnet (GAG) transparent ceramics derived from their precipitation precursors via a facile co-precipitation strategy using ammonium hydrogen carbonate (AHC) as the precipitant. The resulting precursors in liquid phase were substantially homogeneous solid solutions and could directly convert into sinterable garnet powders via pyrolysis. Substituting 35 at.% of Lu3+ for Gd3+ was effective to stabilize the cubic GAG garnet structure and transparent (Gd,Lu)3Al5O12:Ce ceramics were successfully fabricated by vacuum sintering at 1715°C. The ceramic transparency was improved by optimizing the particle processing conditions and the best sample had an in-line transmittance of ~70% at 580 nm (Ce3+ emission center) and over 80% in partial infrared region with a fine average grain size of ~4.5 μm. Transparent (Gd,Lu)3Al5O12:Ce ceramics have a short critical wavelength (<200 nm) and a maximal infrared cut-off at ~6.6 μm. Both the (Gd,Lu)3Al5O12:Ce phosphor powder and the transparent ceramic exhibited characteristic yellow emission of Ce3+ with strong broad emission bands from 490 to 750 nm upon UV excitation into two groups of broad bands around 340 and 470 nm. The photoluminescence and photoluminescence excitation intensities as well as the quantum yield were greatly enhanced via high-temperature densification. Both the phosphor powder and ceramic bulk had short effective fluorescence lifetimes.  相似文献   

17.
《Ceramics International》2017,43(18):16384-16390
The protonic material La2Ce2O7 exhibits good tolerance to H2O and CO2 compared to BaCeO3-based materials and has become increasingly popular for operation at low-to-intermediate temperatures in protonic ceramic fuel cells. In this work, doping La2Ce2O7 with Na in a series with varying compositions is studied. All of the precursors are prepared by a common citrate-nitrate combustion method. X-ray diffraction images reveal that all of the La2-xNaxCe2O7-δ samples have a cubic structure. The La2-xNaxCe2O7-δ pellets are characterized by scanning electron microscopy and are observed to be dense without holes. The effects of Na-doping on the La2Ce2O7 electrical conductivity are carefully investigated in air at 350–800 °C and 5%H2-95% Ar environments at 350–700 °C. It is found that different levels of Na doping in La2Ce2O7 are conducive to improving the electrical conductivity and sinterability. Among the pellets, La1.85Na0.15Ce2O7-δ exhibited the highest electrical conductivity in air and 5% H2-95% Ar atmospheres. Anode-supported half cells with La1.85Na0.15Ce2O7-δ electrolyte are also fabricated via a dry-pressing process, and the corresponding single cell exhibited a desirable power performance of 501 mW cm−2 at 700 °C. The results demonstrate that La1.85Na0.15Ce2O7-δ is a promising proton electrolyte with high conductivity and sufficient sinterability for use in protonic ceramic fuel cells operating at reduced temperatures.  相似文献   

18.
La2Zr2O7 has high melting point, low thermal conductivity and relatively high thermal expansion which make it suitable for application as high-temperature thermal barrier coatings. Ceramics including La2Zr2O7, (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 were synthesized by solid state reaction. The effects of co-doping on the phase structure and thermophysical properties of La2Zr2O7 were investigated. The phase structures of these ceramics were identified by X-ray diffraction, showing that the La2Zr2O7 ceramic has a pyrochlore structure while the co-doped ceramics (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and the (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 exhibit a defect fluorite structure, which is mainly determined by ionic radius ratio r(Aav.3+)/r(Bav.4+). The measurements for thermal expansion coefficient and thermal conductivity of these ceramics from ambient temperature to 1200 °C show that the co-doped ceramics (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 have a larger thermal expansion coefficient and a lower thermal conductivity than La2Zr2O7, and the (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 shows the more excellent thermophysical properties than (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 due to the increase of Yb2O3 content.  相似文献   

19.
Porous La2Zr2O7 ceramic aerogels (CAs) were prepared by sol-gel template method and thermal treated process. The microstructure and crystallisation behavior of the samples were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The results indicated that the as-prepared porous La2Zr2O7 CAs had a single-phase pyrochlore structure with typical three-dimensional (3-D) porous structure. Meanwhile, the formation mechanisms of the as-prepared porous La2Zr2O7 CAs were investigated. At the same time, the as-prepared porous La2Zr2O7 CAs presented an ultralow room-temperature thermal conductivity of 0.07 W/(m K), high specific surface areas of 325.17 m2/g, and a relatively high compressive strength of 11.95 MPa. What's more, the as-prepared porous La2Zr2O7 CAs possessed ideal photocatalytic activities due to its high crystallinity, large surface area as well as unique 3-D porous structure. Therefore, the present work is proposing some new insight to prepare rare-earth zirconates CAs with porous structures for thermal insulation and dye degradation applications.  相似文献   

20.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号