首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Densifications of hot-pressed ZrC ceramics with Zr and graphite additives were studied at 1800-2000 °C. ZrC with 8.94 wt% Zr additive (named ZC10) sintered at 1900-2000 °C achieved higher relative densities (>98.4%) than that of additive-free ZrC (<83%). The densification improvement was attributed to the formation of non-stoichiometric ZrC0.9, whereas there had rapid grain growth with grain size about 50-100 μm in ZC10. By adding co-doped additive of Zr plus C and adjusting the molar ratio of Zr/C, ZrC with co-doped additives with Zr/C molar ratio at 1:2 (named ZC12), ZrC ceramics with both high relative density (98.4%) and fine microstructures (grain size about 5-10 μm) were obtained at 1900-2000 °C. Effect of formation of non-stoichiometric ZrC1−x on densification of ZrC was discussed. The Vickers hardness and indentation toughness of ZC10 and ZC12 samples sintered at 1900 °C were 17.8 GPa and 3.0 MPa m1/2, 16.2 GPa and 4.7 MPa m1/2, respectively.  相似文献   

2.
Medium-entropy (Ti,Zr,Hf)C ceramics were prepared by hot pressing a dual-phase medium-entropy carbide powder with low oxygen content (0.45 wt%). The results demonstrate that the medium-entropy (Ti,Zr,Hf)C ceramics sintered at 2100°C had a relative density of 99.2% and an average grain size of 1.9 ± 0.6 μm. The flexural strength of (Ti,Zr,Hf)C carbide ceramics at room temperature was 579 ± 62 MPa. With an increase in temperature to 1600°C, the flexural strength showed an increase up to 619 ± 57 MPa, and had no significant degradation even up to 1800°C. The high-temperature flexural strengths of (Ti,Zr,Hf)C were obviously higher than those of the monocarbide ceramics (TiC, ZrC, and HfC). The primary strengthening mechanism in (Ti,Zr,Hf)C could be attributed to the high lattice parameter mismatch effects between TiC and ZrC, which not only inhibited the fast grain coarsening of (Ti,Zr,Hf)C ceramics, but also increased the grain-boundary strength of the obtained ceramics.  相似文献   

3.
The effect of W addition on densification, microstructure, and mechanical properties of ZrC ceramics was investigated. W reacted with carbon in ZrC to form WC, which resulted in the formation of ZrC1-x at 1300-1700°C, while WC was further dissolved in ZrC to form a (Zr1-yWy)C1-x solid solution at 1800-2000°C. The relative density of ZrC with 5 mol% W (ZW5, 96.8%) was markedly higher than that of pure ZrC (Z0, 94.8%). ZW5 exhibited a fine homogeneous microstructure with a grain size (2.6 ± 0.5 μm) much smaller than that of Z0 (10.9 ± 3.0 μm), while excess W addition (10 mol%) in ZrC adversely affected the densification and the microstructure. The flexure strength of Z0 was 446 ± 46 MPa at room temperature, which almost linearly decreased to 281 ± 10 MPa at 1800°C in a high-purity flowing argon atmosphere. The flexure strength of ZW5 was 512 ± 40 MPa at room temperature, and had no degradation even up to 1800°C. The fine and homogeneous microstructure of ZW5 and the removal of oxygen impurity from the grain boundaries promoted the enhancement of high-temperature mechanical properties.  相似文献   

4.
《Ceramics International》2020,46(11):18842-18850
Zirconium diboride-mullite composite powder was synthesized in-situ by combustion in argon of a zircon sand/B2O3/Al reactant system in a 3 : 3: 10 M ratio. Zircon sand with a particle size less than 45 μm was activated by high-energy milling for 360 min. The optimum reactant system included the addition of 0.01 mol of Si. The product of the synthesis of this system contained 34 wt% ZrB2 and 50 wt% mullite. The obtained zirconium diboride-mullite powder was consolidated by hot pressing at 25 MPa in an argon environment, ramping at 10 °C/min to 1,450, 1550 and 1650 °C and holding for 60 min. The sintered composite hot-pressed at 1650 °C had a density of 3.39 g/cm3, flexural strength of 153.25 ± 1.19 MPa, hardness of 10.66 GPa and fracture toughness of 4.23 MPa.m1/2. The flexural strength and hardness of the composite was significantly influenced by the grain size of the reinforced ZrB2. The predominantly intergranular fracture observed in surface micrographs confirmed the high toughness of the composite. The coefficient of thermal expansion of the product hot-pressed at 1650 °C was 6.53 × 10−6/°C: much lower than reported coefficients of existing Al2O3, ZrO2 ZrB2, and ZrB2–SiC refractory ceramics.  相似文献   

5.
ZrB2 was mixed with 0.5 wt% carbon and up to 10 vol% ZrC and densified by hot-pressing at 2000 °C. All compositions were > 99.8% dense following hot-pressing. The dense ceramics contained 1–1.5 vol% less ZrC than the nominal ZrC addition and had between 0.5 and 1 vol% residual carbon. Grain sizes for the ZrB2 phase decreased from 10.1 µm for 2.5 vol% ZrC to 4.2 µm for 10 vol% ZrC, while the ZrC cluster size increased from 1.3 µm to 2.2 µm over the same composition range. Elastic modulus was ~505 GPa and toughness was ~2.6 MPa·m½ for all compositions. Vickers hardness increased from 14.1 to 15.3 GPa as ZrC increased from 2.5 to 10 vol%. Flexure strength increased from 395 MPa for 2.5 vol% ZrC to 615 MPa for 10 vol% ZrC. Griffith-type analysis suggests ZrB2 grain pullout from machining as the strength limiting flaw for all compositions.  相似文献   

6.
Reactive hot pressing was used to prepare Zr1?xTixB2–ZrC composites with advantageous microstructure and mechanical properties from ZrB2–TiC powders. The reaction mechanisms and the effects of different levels of TiC on the physical and mechanical properties of the resulting composite were explored in detail and compared to conventionally hot‐pressed ZrB2 and ZrB2–ZrC. Incorporation of 10 to 30 vol% TiC enabled full densification and restrained grain growth, reducing the final average grain size from 5.6 μm in pure ZrB2 to a minimum of 1.4 μm in samples with 30 vol% TiC. The flexural strengths and hardnesses of the composites sintered with TiC were consequently greater than the conventionally processed ZrB2–ZrC materials, increasing from 440 MPa and 17.4 GPa to a maximum of 670 MPa and 24.2 GPa at 10 vol% TiC. However, despite a decrease in the total average grain size, the flexural strength at higher TiC levels was limited by an increase in ZrC grain growth, which was observed to determine the flexural strength of the reaction sintered composites similar to the case of ZrB2–SiC.  相似文献   

7.
《Ceramics International》2016,42(15):16474-16479
A series of ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol% were prepared by reactive hot-pressing using Zr, B4C and SiC as raw materials. Self-propagating high-temperature synthesis (SHS) occurred, and ZrC grains connected each other to form a layered structure when the SiC content is below 20 vol%. The evolution of microstructure has been discussed via reaction processes. The composite with 10 vol% SiC presents the most excellent mechanical properties (four-point bending strength: 828.6±49.9 MPa, Vickers hardness: 19.9±0.2 GPa) and finest grain size (ZrB2: 1.52 µm, ZrC: 1.07 µm, SiC: 0.79 µm) among ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol%.  相似文献   

8.
The mechanical properties of a (Hf,Mo,Nb,Ta,W,Zr)B2 high-entropy ceramic were measured at room temperature. A two-step synthesis process was utilized to produce the (Hf,Mo,Nb,Ta,W,Zr)B2 ceramics. The process consisted of a boro/carbothermal reduction reaction followed by solid solution formation and densification through spark plasma sintering. Nominally, phase pure (Hf,Mo,Nb,Ta,W,Zr)B2 was sintered to near full density (8.98 g/cm3) at 2000°C. The mean grain size was 6 ± 2 µm with a maximum grain size of 17 µm. Flexural strength was 528 ± 53 MPa, Young's modulus was 520 ± 12 GPa, fracture toughness was 3.9 ± 1.2 MPa·m1/2, and hardness (HV0.2) was 33.1 ± 1.1 GPa. A Griffith-type analysis determined the strength limiting flaw to be the largest grains in the microstructure. This is one of the first reports of a variety of mechanical properties of a six-component high-entropy diboride.  相似文献   

9.
High‐strength ZrC ceramics with relative density above 98% were prepared by reactive hot pressing of ZrC and Al at 1900°C. The reaction between ZrC and Al resulted in the formation of ZrC1?x, Zr3Al3C5 and Zr–Al compound such as AlZr3 and Al–C–Zr. The intermediate product AlZr3 below 1600°C and remained Al–C–Zr phase could form liquid phase and promoted the first stage of densification process. The improvement in densification behavior at higher temperatures (1800°C–1900°C) could be attributed to the formation of nonstoichiometric ZrC1?x. Adding 5 wt% and 7.5 wt% Al to ZrC, the formed ZrC0.85–Zr3Al3C5 and ZrC0.80–Zr3Al3C5 based ceramics had 3‐point bending strength as high as 757 ± 79 MPa and 967 ± 50 MPa, respectively, with hardness and fracture toughness being 16.2–18.3 GPa and 3.3–3.5 MPa m1/2, respectively.  相似文献   

10.
Entropy-stabilized (Hf,Nb,Ta,Ti,Zr)B2 solid solution powders produced by a carbo/boro-thermal reduction followed by solid solution formation were first analysed by synchrotron radiation x-ray diffraction, and their long range periodicity (i.e. lattice parameters) as well as the micro-strain intended as lattice disorder were quantitatively determined. A model to describe the micro-strain was proposed. The as-synthesized (Hf,Nb,Ta,Ti,Zr)B2 solid solution powders were then hot-pressed at 2200 K and 50 MPa until near full densification was achieved. The hot-pressed material had a residual micro-porosity of 1.3 vol.% and consisted of a (Hf,Nb,Ta,Ti,Zr)B2 ceramic matrix, 0.3-1 μm grain size range, and of a residual 10 vol.% B4C particulate component, grain size in the range 0.2-2 μm. B4C was a side product of the former synthesis and, after hot-pressing, remained trapped along the grain boundaries of the primary (Hf,Nb,Ta,Ti,Zr)B2 solid solution ceramic matrix. Micro-hardness HV0.2 = 22.7 ± 1.9 GPa for 1.96 N applied force was measured.  相似文献   

11.
Composites of ZrC–SiC with relative densities in excess of 98% were prepared by reactive hot pressing of ZrC and Si at temperature as low as 1600°C. The reaction between ZrC and Si resulted in the formation of ZrC1?x, SiC, and ZrSi. Low‐temperature densification of ZrC?SiC ceramics is attributed to the formed nonstoichiometric ZrC1?x and Zr–Si liquid phase. Adding 5 wt% Si to ZrC, the three‐point bending strength of formed ZrC0.8–13.4 vol%SiC ceramics reached 819 ± 102 MPa with hardness and toughness being 20.5 GPa and 3.3 MPa·m1/2, respectively.  相似文献   

12.
ZrC–SiC ceramics were fabricated by high-energy ball milling and reactive hot pressing of ZrH2, carbon black, and varying amounts of SiC. The ceramics were composed of nominally pure ZrC containing 0 to 30 vol% SiC particles. The relative density increased as SiC content increased, from 96.8% for nominally pure ZrC to 99.3% for ZrC-30 vol% SiC. As SiC content increased from 0 to 30 vol%, Young's modulus increased from 404 ± 11 to 420 ± 9 GPa and Vickers hardness increased from 18.5 ± 0.7 to 23.0 ± 0.5 GPa due to a combination of the higher relative density of ceramics with higher SiC content and the higher Young's modulus and hardness of SiC compared to ZrC. Flexure strength was 308 ± 11 MPa for pure ZrC, but increased to 576 ± 49 MPa for a SiC content of 30 vol%. Fracture toughness was 2.3 ± 0.2 MPa·m1/2 for pure ZrC and increased to about 3.0 ± 0.1 MPa·m1/2 for compositions containing SiC additions. The combination of high-energy ball milling and reactive hot pressing was able to produce ZrC–SiC ceramics with sub-micron grain sizes and high relative densities with higher strengths than previously reported for similar materials.  相似文献   

13.
Dense (Zr, Ti) (C, N) ceramics were fabricated by spark plasma sintering (SPS) at 1900–2000 °C using ZrC, TiCN and ZrH2 powders as raw materials. A single Zr-rich (Zr, Ti)(C, N) solid solution was formed in Zr0.95Ti0.05C0.975N0.025 and Zr0.80Ti0.20C0.90N0.10 ceramics (nominal composition). A Ti-rich solid solution appears in Zr0.50Ti0.50C0.75N0.25 ceramics. The coaddition of TiCN and ZrH2 promoted the densification of (Zr, Ti) (C, N) ceramics by forming solid solutions and carbon vacancies, which could reduce critical resolved shear stress (CRSS) and promote carbon and metal atom diffusion. ZrC-45 mol% TiCN-10 mol% ZrH2 (raw powder composition) possesses good comprehensive mechanical properties (Vickers hardness of 24.5 ± 0.9 GPa, flexural strength of 503 ± 51 MPa, and fracture toughness of 4.3 ± 0.2 MPa·m1/2), which reach or exceed most ZrC-based (Zr, Ti) C and (Zr, Ti) (C, N) ceramics in previous reports.  相似文献   

14.
The mechanical properties of single-phase (Hf,Zr,Ti,Ta,Nb)C high-entropy carbide (HEC) ceramics were investigated. Ceramics with relative density >99% and an average grain size of 0.9 ± 0.3 µm were produced by a two-step process that involved carbothermal reduction at 1600°C and hot pressing at 1900°C. At room temperature, Vickers hardness was 25.0 ± 1.0 GPa at a load of 4.9 N, Young's modulus was 450 GPa, chevron notch fracture toughness was 3.5 ± 0.3 MPa·m1/2, and four-point flexural strength was 421 ± 27 MPa. With increasing temperature, flexural strength stayed above ~400 MPa up to 1800°C, then decreased nearly linearly to 318 ± 21 MPa at 2000°C and to 93 ± 10 MPa at 2300°C. No significant changes in relative density or average grain size were noted after testing at elevated temperatures. The degradation of flexural strength above 1800°C was attributed to a decrease in dislocation density that was accompanied by an increase in dislocation motion. These are the first reported flexural strengths of HEC ceramics at elevated temperatures.  相似文献   

15.
A novel aluminum magnesium oxynitride transparent ceramic with the chemical formula Mg0.27Al2.58O3.73N0.27 was firstly prepared by pressureless sintering of fine single‐phase powders at 1875°C for 24 h in nitrogen atmosphere. The ceramic was fully dense with the average grain size of 57.5 μm. The sample showed excellent in‐line transmission from the visible to middle‐infrared wavelengths with the maximum transmittance of 84%, which could be attributed to rare pores in the sintering body. The material also exhibited good mechanical properties of Vickers hardness (13.39 ± 0.18 GPa), fracture toughness (2.46 ± 0.3 MPa/m1/2), and flexural strength (274 ± 6 MPa).  相似文献   

16.
《Ceramics International》2020,46(11):19008-19014
Powders of high-entropy Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2C (HECZr) and Hf0.2Ta0.2Ti0.2Nb0.2Mo0.2C (HECMo) carbides were fabricated through the reactive high-energy ball milling (R-HEBM) of metal and graphite particles. It was found that 60 min of R-HEBM is adequate to achieve a full conversion of the initial precursors into a FCC solid solution for both compositions. The HECZr powder possesses a unimodal particle size distribution (40% d ≤ 1 μm, 95% d ≤ 10 μm), and the HECMo powder features a bimodal distribution with a slightly larger particle size overall (30% d ≤ 1 μm, 80% d ≤ 10 μm). Bulk high-entropy ceramics with a minor presence of an oxide phase were fabricated through the spark plasma sintering of these high-entropy powders at 2000 °C with a 10 min dwelling time. The HECZr ceramics possess a relative density of up to 94.8%, hardness of 25.7 ± 3.5 GPa, Young's modulus of 473 ± 37 GPa, and thermal conductivity of 5.6 ± 0.1 W/m·K. HECMo ceramics with a relative density of up to 93.8%, hardness of 23.8 ± 2.7 GPa, Young's modulus of 544 ± 48 GPa, and thermal conductivity of 5.9 ± 0.2 W/m·K were also fabricated. A comparison of the properties of the HECs produced in this study and those previously reported is also provided.  相似文献   

17.
Samarium hexaboride (SmB6) powders were synthesized by boro/carbothermal reduction of Sm2O3 with B4C. Nominally pure SmB6 powder had a mean particle size of about 400 nm and an oxygen content of 0.12 wt%. SmBO3 formed as an intermediate phase during the synthesis. The synthesized powder was hot pressed at 1950°C to produce SmB6 ceramics with relative densities >99.6% and a mean grain size of 4.4 μm. Vickers’ hardness was 20.1 ± 0.7 GPa. Young's modulus measured by bending and ultrasonic methods was 271 and 244 GPa, respectively. The flexure strength was 253 ± 79 MPa and fracture toughness was 2.1 ± 0.1 MPa m1/2. These are the first reported results of the microstructure and bulk mechanical behavior of SmB6 ceramics.  相似文献   

18.
Zirconium diboride (ZrB2) ceramics were prepared by reactive hot pressing of ZrB+B powder mixture. Formation of a transient liquid due to eutectic reaction of ZrB2+Zr→Leu(ZrB2+Zr) at 1661°C following peritectic decomposition of 2ZrB=ZrB2+Zr at 1250°C during heating up of the ZrB+B mixture facilitated densification. The liquid phase was subsequently eliminated via reaction of B with Zr in the eutectic liquid Leu(ZrB2+Zr) to result in a dense ZrB2 ceramic. Full density was reached after reactive hot pressing at 1900°C under 30 MPa for 1 h. The ZrB2 ceramic had a refined microstructure consisting of grains of <1.5 μm in size and relatively good Vickers hardness (21 ± 2 GPa) and flexural strength (595 ± 63 MPa).  相似文献   

19.
The mechanical properties of a ZrB2‐10 vol% ZrC ceramic were measured up to 2300°C in an argon atmosphere. Dense billets of ZrB2‐9.5 vol% ZrC‐0.1 vol% C were produced by hot‐pressing at 1900°C. The ZrB2 grain size was 4.9 μm and ZrC cluster size was 1.8 μm. Flexure strength was 695 MPa at ambient, decreasing to 300 MPa at 1600°C, increasing to 345 MPa at 1800°C and 2000°C, and then decreasing to 290 MPa at 2200°C and 2300°C. Fracture toughness was 4.8 MPa·m½ at room temperature, decreasing to 3.4 MPa·m½ at 1400°C, increasing to 4.5 MPa·m½ at 1800°C, and decreasing to 3.6 MPa·m½ at 2300°C. Elastic modulus calculated from the crosshead displacement was estimated to be 505 GPa at ambient, relatively unchanging to 1200°C, then decreasing linearly to 385 GPa at 1600°C, more slowly to 345 GPa at 2000°C, and then more rapidly to 260 GPa at 2300°C. Surface flaws resulting from machining damage were the critical flaw up to 1400°C. Above 1400°C, plasticity reduced the stress at the crack tip and the surface flaws experienced subcritical crack growth. Above 2000°C, microvoid coalescence ahead of the crack tip caused failure.  相似文献   

20.
We report for the first time the synthesis of a core-shell structured composite powder with a core of Zr(Ti,Ta)C and a shell of Ti,Ta(Zr)C at 1700°C and investigate the formation mechanism for the core-shell structure. The medium-entropy (Ti,Zr,Ta)C ceramics with fine grains (1.1 ± 0.4 μm) and relative density of 94.8% was prepared by hot-pressing at 2100°C. The flexural strength of (Ti,Zr,Ta)C at 1000°C (493 ± 21 MPa) was close to the room temperature (511 ± 52 MPa). As the temperature increased from 1600°C to 1800°C, the flexural strength was increased significantly, with an ultra-high flexural strength of 725 ± 32 MPa at 1800°C. The existence of the core-shell structure in the powder suppressed the grain growth due to the sluggish diffusion effect. The ultra-high strength of (Ti,Zr,Ta)C ceramics was attributed to its fine microstructures, high fracture toughness, and the reinforced the grain boundary strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号