首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— Several white‐OLED structures with a high color‐rendering index (CRI) were investigated for lighting applications. A two‐unit fluorescent/phosphorescent hybrid white OLED achieved an excellent CRI of 95, high luminous efficacy of 37 lm/W, and long lifetime of over 40,000 hours at 1000 cd/m2. White‐OLED lighting panels of 8 × 8 cm for high‐luminance operation were fabricated, and a stable emission at 3000 cd/m2 was confirmed. Quite a small variation in chromaticity in a different directions was achieved by using an optimized optical device structure. With a light‐outcoupling substrate, a higher efficacy of 56 lm/W, high CRI of 91, and longer half‐decay lifetime of over 150,000 hours at 1000 cd/m2 was achieved. All‐phosphorescent white OLEDs placed on the light‐outcoupling substrate show a high CRI of 85 and higher efficacy of 65 lm/W with a fairly good half‐decay lifetime of over 30,000 hours. With a further voltage reduction and a high‐index spherical extractor, 128 lm/W at 1000 cd/m2 has been achieved.  相似文献   

2.
A flexible vertically stacked flexible polychromatic color‐tunable OLED has been developed by means of low resistive intermediate electrode technology. The polychromatic OLED has a capability to show 16 million colors with 105% National Television Committee Standard (NTSC) color reproduction. The device can produce arbitrary shape with arbitrary colors, suitable for artistic expressions, just as many as those used in information displays. Independently controlled red, green, and blue light‐emitting layers are stacked vertically. With conventional indium tin oxide technology, because of the temperature restriction, it was quite difficult to achieve low resistance on plastic substrate. The reported numbers were all more than 80 Ω/□. According to the surface mobility control using Fick's law analysis, low sheet resistance 7.34 Ω/□ on plastic film was developed. At first, flexible 7.17 cm2 transparent OLED was fabricated for the performance confirmation of transparent electrode. And then polychromatic color‐tunable OLED with the same size were successfully fabricated on plastic. With optical length optimization for each color stack of polychromatic OLED, more than 100% color reproduction in National Television Committee Standard was achieved by stack design. The polychromatic device can be used for colored illumination, as well as for organic‐light‐emitting display pixels for three times emission than conventional pixel design. The device is fabricated on plastic substrate so that the polychromatic organic‐light‐emitting‐diode device is manufacturable with roll‐to‐roll production line.  相似文献   

3.
Abstract— Highly efficient tandem white OLEDs based on fluorescent materials were developed for display and solid‐state‐lighting (SSL) applications. In both cases, the white OLED must have high power efficiency and long lifetime, but there are a number of attributes unique to each application that also must be considered. Tandem OLED technology has been demonstrated as an effective approach to increase luminance, extend OLED lifetime, and allow for use of different emitters in the individual stacks for tuning the emission spectrum to achieve desired performance. Here, examples of bottom‐emission tandem white OLEDs based on small‐molecule fluorescent emitters designed for displays and for SSL applications are reported. A two‐stack tandem white OLED designed for display applications achieved 36.5‐cd/A luminance efficiency, 8500K color temperature, and lifetime estimated to exceed 50,000 hours at 1000 cd/m2. This performance is expected to meet the specifications for large AMOLED displays. A two‐stack tandem white OLED designed for SSL applications achieved 20‐lm/W power efficiency, 38‐cd/A luminance efficiency, 3500K color temperature, and lifetime estimated to exceed 140,000 hours at 1000 cd/m2. With the use of proven light‐extraction techniques, it is estimated that this tandem device will exceed 40 lm/W with more than 500,000‐hour lifetime, performance that should be sufficient for first‐generation lighting products.  相似文献   

4.
Abstract— Rollable silicon thin‐film‐transistor (TFT) backplanes utilizing a roll‐to‐roll process have been developed. The roll‐to‐roll TFT‐backplane technology is characterized by a glass‐etching TFT transfer process and a roll‐to‐roll continuous lamination process. The transfer process includes high‐rate, uniform glass‐etching to transfer TFT arrays fabricated on a glass substrate to a flexible plastic film. In the roll‐to‐roll process, thinned TFT‐glass sheets (0.1 mm) and a base‐film roll are continuously laminated using a permanent adhesive. Choosing both an appropriate elastic modulus for the adhesive and an appropriate tension strength to be used in the process is the key to suppressing deformation of the TFT‐backplane rolls caused by thermal stress. TFT backplanes that can be wound, without any major physical damage such as cracking, on a roll whose core diameter is approximately 300 mm have been sucessfully obtained. Incorporating the TFT‐backplane rolls into other roll components, such as color‐filter rolls, will make it possible to produce TFT‐LCDs in a fully roll‐to‐roll manufacturing process.  相似文献   

5.
Abstract— Color displays and flexible displays that use electronic liquid powder have been developed. Novel types of color displays using either a colored powder or a color filter are discussed. We have also developed a flexible display with low‐cost substrate films with a high‐throughput roll‐to‐roll manufacturing method. These technologies enable a QR‐LPD to be widely used as an electronic‐paper display.  相似文献   

6.
Abstract— A novel method for the fabrication of ink‐jet‐printed organic light‐emitting‐diode devices is discussed. Unlike previously reported solution‐processed OLED devices, the emissive layer of OLED devices reported here does not contain polymeric materials. The emission of the ink‐jet‐printed P2OLED (IJ‐P2OLED) device is demonstrated for the first time. It shows good color and uniform emission although it uses small‐molecule solution. Ink‐jet‐printed green P2OLED devices possess a high luminous efficiency of 22 cd/A at 2000 cd/m2 and is based on phosphorescent emission. The latest solution‐processed phosphorescent OLED performance by spin‐coating is disclosed. The red P2OLED exhibits a projected LT50 of >53,000 hours with a luminous efficiency of 9 cd/A at 500 cd/m2. The green P2OLED shows a projected LT50 of >52,000 hours with a luminous efficiency of 35 cd/A at 1000 cd/m2. Also discussed is a newly developed sky‐blue P2OLED with a projected LT50 of >3000 hour and a luminous efficiency of 18 cd/A at 500 cd/m2.  相似文献   

7.
Large flexible organic light‐emitting diode (OLED) display provides various electronic applications such as curved, bendable, rollable, and commercial display, because of its thinness, light weight, and design freedom. In this work, the process flow and key technologies to fabricate the world's first large size 77‐inch transparent flexible OLED display are introduced. “White OLED on TFT + color filter” method is used to fabricate the aforementioned display. On both thin‐film transistor and color filter substrates, transparent polyimide (PI) was used as plastic substrate with multi‐barrier. In case of a transparent flexible display, the multi‐barrier is required for the additional consideration to overcome the decrease of transmittance due to the difference in refractive index of the conventional multi‐barrier. We developed the special multi‐barrier to increase transparency with superior water vapor transition rate characteristic. The optimized amorphous indium gallium zinc oxide thin‐film transistors were employed on the multi‐barrier, and it shows the highly uniform electrical performance and reliability on plastic substrate. Also, the typical panel failure mechanism during laser lift‐off process caused by a particle in PI is studied, and a sacrificial layer was suggested between PI and a carrier glass to reduce the panel failure. Finally, we successfully realized the world's first 77‐inch transparent flexible OLED display with ultra‐high‐definition resolution, which can be rolled up to a radius of 80 mm with a transmittance of 40%.  相似文献   

8.
Abstract— Novaled's PIN‐OLED® technology allows for highly efficient, temperature stable, and long‐lived OLEDs suited for a variety of display applications. This paper delivers an overview about Novaled's state of the art, including top‐ and bottom‐emitting structures. It is discussed how PIN‐OLEDs give rise to an increased manufacturing yield. The main focus of this paper is the development of white OLEDs for display use. When the RGBW color‐filter approach is used in combination with white OLEDs, the resulting full‐color OLED display is able to deliver high color quality and remain highly power efficient. For such a case, the manufacturing infrastructure of OLEDs for lighting can be used. We use tandem architectures, bottom‐ and top‐emission architectures, and developed specific high‐temperature stable OLED stacks. The importance of matching color coordinates of the white OLED and the targeted display white color point is of outstanding importance. Results have mainly been achieved under the German‐funded project CARO and the European‐funded project AMAZOLED.  相似文献   

9.
Abstract— This article addresses spontaneously polarized light emission from GaN‐based light‐emitting diodes (LEDs) fabricated on electrically non‐polar crystallographic orientations and application of spontaneously polarized emission for backlighting of liquid‐crystal displays (LCDs). The first half of the article describes polarized light emission from GaN‐based LEDs and its role in solid‐state lighting technology. The second half reports on our experimental work to explore the potential of non‐polar LEDs for LCD backlighting applications. Optical transmission of non‐polar LED emission was characterized through a liquid‐crystal layer. Extinction ratios of 0.21 were measured between zero and an applied bias voltage to the liquid‐crystal cells. These extinction ratios are not particularly high yet; nevertheless, the experiment has demonstrated the potential of such non‐polar LEDs for LCD backlighting.  相似文献   

10.
Abstract— A thin and flexible LSI driver with a thickness of less than 35 μm for a passive‐matrix‐driven Quick‐Response Liquid‐Powder Display (QR‐LPD?) was successfully mounted onto the flexible printed circuit (FPC) and the back substrates of a flexible QR‐LPD?. Amounted LSI driver on a plastic substrate shows no significant degradation in the driving performances and maintains physical flexibility without any connection failures. This technology can realize a fully flexible electronic paper in combination with a plastic‐substrate QR‐LPD? fabricated by a roll‐to‐roll process.  相似文献   

11.
Abstract— Whether the manufacturing of the large‐sized OLED devices in display and lighting industry succeeds or not will strongly depend on the concept of a thermal evaporation source and the manufacturing tool. The most important factors in OLED‐device manufacturing are the organic material utilization and the TACT time. An in‐line tool for OLED manufacturing using a novel belt‐source evaporation technique is proposed. The belt source maintains the organic film uniformity at 3% and provides high material utilization of over 80%, and the in‐line system can achieve this in 1‐min TACT time.  相似文献   

12.
Abstract— A novel flexible active‐matrix organic light‐emitting‐diode (OLED) display fabricated on planarized stainless—used‐steel substrates with a resolution of 85 dpi in a 4.7‐in. active area has been demonstrated. Amorphous indium—gallium—zinc—oxide thin‐film transistors were used as the backplane for the OLED display with high device performance, high electrical stability, and long lifetime. A full‐color moving image at a frame frequency of 60 Hz was also realized by using a flexible color filter directly patterned on a plastic substrate with a white OLED as the light source.  相似文献   

13.
Abstract— The unique properties of carbon nanotubes (CNTs) promise innovative solutions for a variety of display applications. The CNTs can be deposited from suspension. These simple and low‐cost techniques will replace time‐consuming and costly vacuum processes and can be applied to large‐area glass and flexible substrates. Single‐walled carbon nanotubes (SWNTs) have been used as conducting and transparent layers, replacing the brittle ITO, and as the semiconducting layer in thin‐film transistors (TFTs). There is no need for alignment because a CNT network is used instead of single CNTs. Both processes can be applied to glass and to flexible plastic substrates. The transparent and conductive nanotube layers can be produced with a sheet resistance of 400 Ω/□ at 80% transmittance. Such layers have been used to produce directly addressed liquid‐crystal displays and organic light‐emitting diodes (OLED). The CNT‐TFTs reach on/off ratios of more than 105 and effective charge‐carrier mobilities of 1 cm2/V‐sec and above.  相似文献   

14.
Abstract— High‐performance and excellent‐uniformity thin‐film transistors (TFTs) having bottom‐gate structures are fabricated using an amorphous indium‐gallium‐zinc‐oxide (IGZO) film and an amorphous‐silicon dioxide film as the channel layer and the gate insulator layer, respectively. All of the 94 TFTs fabricated with an area 1 cm2 show almost identical transfer characteristics: the average saturation mobility is 14.6 cm2/(V‐sec) with a small standard deviation of 0.11 cm2/(V‐sec). A five‐stage ring‐oscillator composed of these TFTs operates at 410 kHz at an input voltage of 18 V. Pixel‐driving circuits based on these TFTs are also fabricated with organic light‐emitting diodes (OLED) which are monolithically integrated on the same substrate. It is demonstrated that light emission from the OLED cells can be switched and modulated by a 120‐Hz ac signal input. Amorphous‐IGZO‐based TFTs are prominent candidates for building blocks of large‐area OLED‐display electronics.  相似文献   

15.
Abstract— Two pico‐projection systems, a monochrome green and a full‐color system, based on high‐efficiency OLED microdisplays (VGA; pixel size, 12 μm) are presented. Both optical systems are described by a numerical aperture of about 0.3, a magnification of 15x, and a working distance of 300–360 mm. The frequency limit of both systems is 42 cycles/mm at an image contrast of about 60%. The monochrome projection system with a volume smaller than 10 cm3 consists of one green OLED and a projection lens with five elements. The measured luminance in the image plane is about 0.061 lm. The image has a diagonal of 150 mm with a working distance of about 300 mm and has a considerable image contrast of 396:1. The second system combines three high‐brightness OLEDs, red, green, and blue colored, together with a projection lens and an image‐combining element, and an X‐Cube to achieve full‐color projection. The estimated luminance value for the three‐panel projection unit with an OLED luminance of 10,000 cd/m2 for each display will be about Φcalculated = 0.147 lm. In this paper, the system concepts, the optical designs, and the realized prototypes of the monochrome and full‐color projection system are presented.  相似文献   

16.
Abstract— A 3‐m‐long rugged flexible display having a novel single‐plastic‐substrate structure has been demonstrated with a coated cholesteric liquid‐crystal mixture. The display is designed to be fabricated by a roll‐to‐roll process to increase productivity at a competitive cost. It has the advantage of having almost no limitation in display length. The high‐resolution (300‐dpi) monochrome cholesteric liquid‐crystal display (ChLCD) can be achieved by using a photo‐addressing method. A single‐layered 10.4‐in. color ChLCD also has been developed with good color and contrast.  相似文献   

17.
Abstract— A flexible phosphorescent color active‐matrix organic light‐emitting‐diode (AMOLED) display on a plastic substrate has been fabricated. Phosphorescent polymer materials are used for the emitting layer, which is patterned using ink‐jet printing. A mixed solvent system with a high‐viscosity solvent is used for ink formulation to obtain jetting reliability. The effects of evaporation and the baking condition on the film profile and OLED performances were investigated. An organic thin‐film‐transistor (OTFT) backplane, fabricated using pentacene, is used to drive the OLEDs. The OTFT exhibited a current on/off ratio of 106 and a mobility of 0.1 cm2/V‐sec. Color moving images were successfully shown on the fabricated display.  相似文献   

18.
Abstract— Light‐emitting transistors having a metal‐base organic transistor (MBOT) structure demonstrate both the function of an organic thin‐film transistor (OTFT) and organic light‐emitting diode (OLED). The MBOT is a vertical‐type organic transistor having a simple structure composed of organic/metal/organic layers demonstrating high‐current and low‐voltage operation. The light‐emitting MBOT was fabricated simply by inserting additional layers of hole‐transporting and emissive materials used in the OLED into the col lector layer. The device showed perfect surface emission similar to an OLED. A luminance modulation of 370 cd/m2 was observed at a collector voltage of 20 V and a base voltage of 3 V. This device can be applied to an OLED display device to increase the numerical aperture or reduce the required current of the TFT backplane.  相似文献   

19.
Abstract— It is well known that proper encapsulation is crucial for the lifetime of organic light‐emit‐ting‐diode (OLED) displays. With the development of increasingly better barrier coatings and perimeter seals, it has now become very desirable to be able to precisely measure the rate of water‐vapor and oxygen permeation through barrier coatings and perimeter sealing. This paper demonstrates a new permeation‐measurement method that uses tritium‐containing water (HTO) as a tracer material. The theoretical detection limit of this direct method is 2.4 × 10?8 g/(m2‐day).  相似文献   

20.
This study proposes a roll‐to‐roll process‐based sub‐wavelength grating, which is attached on a light bar to turn the side‐lit red/green/blue (620, 520, and 450 nm) incident rays into a uniformly and normally output white light with high illuminance from the light bar's surface. On the basis of the rigorous coupling wave analysis, the relationship between the first‐order transmission/reflection efficiency and the pitch of the gratings with different shapes was analyzed. The optimal design can effectively reduce the coupling length and enhance the white color balance for display applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号