首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress has almost universally and unequivocally been implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress in cells and cardiovascular biology was once considered only in terms of injury, disease and dysfunction. However, it is now appreciated that oxidants are also produced in healthy tissues, and they function as signalling molecules transmitting information throughout the cell. Conversely, when cells move to a more reduced state, as can occur when oxygen is limiting, this can also result in alterations in the function of biomolecules and subsequently cells. At the centre of this 'redox signalling' are oxidoreductive chemical reactions involving oxidants or reductants post translationally modifying proteins. These structural alterations allow changes in cellular redox state to be coupled to alterations in cell function. In this review, we consider aspects of redox signalling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies utilising proteomic methods to identify redox-sensitive cardiac proteins, as well as those using this technology more broadly to assess redox signalling in cardiovascular disease.  相似文献   

2.
Glycosylation is the most structurally complicated and diverse type of protein modifications. Protein glycosylation has long been recognized to play fundamental roles in many biological processes, as well as in disease genesis and progression. Glycoproteomics focuses on characterization of proteins modified by carbohydrates. Glycoproteomic studies normally include strategies to enrich glycoproteins containing particular carbohydrate structures from protein mixtures followed by quantitative proteomic analysis. These glycoproteomic studies determine which proteins are glycosylated, the glycosylation sites, the carbohydrate structures, as well as the abundance and function of the glycoproteins in different biological and pathological processes. Here we review the recent development in methods used in glycoproteomic analysis. These techniques are essential in elucidation of the relationships between protein glycosylation and disease states. We also review the clinical applications of different glycoproteomic methods.  相似文献   

3.
Dendritic cells (DC) have always been present on the bright spot of immune research. They have been extensively studied for the last 35 years, and much is known about their different phenotypes, stimulatory capacity, and role in the immune system. During the last 15 years, great attention has been given to studies on global gene and protein expression profiles during the differentiation and maturation processes of these cells. It is well understood that studying the proteome, together with information on the role of protein post-translational modifications (PTM), will reveal the real dynamics of a living cell. The rapid increase of proteomic studies during the last decade describing the differentiation and maturation process in DCs, as well as modifications brought by the use of different compounds that either increase or decrease their immunogenicity, reflects the importance of understanding the molecular processes behind the functional properties of these cells. In the present review, we will give an overview of proteomic studies focusing on DCs. Thereby we will concentrate on the importance of these studies in understanding DC behavior from a molecular point of view and how these findings have aided in understanding the differences in functional properties of these cells.  相似文献   

4.
Endocrine disorders such as dwarfism and diabetes show abnormalities in many different organs even if a certain hormone is the primary cause of the disease. One of the aims of proteomics is to elucidate an abnormal hormone network underlying dysfunction in the disease through quantitative and qualitative proteome analyses of various organs. In a comprehensive study of the rdw rat with hereditary dwarfism, we found the accumulation of ER proteins in the rdw thyroid. Contrary to the initial notion that the dwarfism of the rat was caused by genetic mutations related to pituitary hormones, the primary cause is a missense mutation in the thyroglobulin gene. To understand at the protein level cellular damage caused by oxidative stress, we developed a proteomic method and applied to detecting protein carbonyls in various organs of a diabetes model OLETF rat. The method would provide a means toward clarifying a comprehensive view of oxidative modifications of proteins in diabetes. We review 2-DE-based disease proteomics of endocrine disorders in general, with particular attention paid to our proteome projects by a 2-DE method with an agarose IEF gel in the first dimension (agarose 2-DE) and LC-MS/MS.  相似文献   

5.
Down syndrome (DS) is one of the most common genetic causes of intellectual disability characterized by multiple pathological phenotypes, among which neurodegeneration is a key feature. The neuropathology of DS is complex and likely results from impaired mitochondrial function, increased oxidative stress, and altered proteostasis. After the age of 40 years, many (most) DS individuals develop a type of dementia that closely resembles that of Alzheimer's disease with deposition of senile plaques and neurofibrillary tangles. A number of studies demonstrated that increased oxidative damage, accumulation of damaged/misfolded protein aggregates, and dysfunction of intracellular degradative systems are critical events in the neurodegenerative processes. This review summarizes the current knowledge that demonstrates a “chronic” condition of oxidative stress in DS pointing to the putative molecular pathways that could contribute to accelerate cognition and memory decline. Proteomics and redox proteomics studies are powerful tools to unravel the complexity of DS phenotypes, by allowing to identifying protein expression changes and oxidative PTMs that are proved to be detrimental for protein function. It is reasonable to suggest that changes in the cellular redox status in DS neurons, early from the fetal period, could provide a fertile environment upon which increased aging favors neurodegeneration. Thus, after a critical age, DS neuropathology can be considered a human model of early Alzheimer's disease and could contribute to understanding the overlapping mechanisms that lead from normal aging to development of dementia.  相似文献   

6.
Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, for the optimization of diagnostic procedures and the development of new treatment options for skeletal muscle disorders. Since inbred animal strains show genetically much less interindividual differences as compared to human patients, considerably lower experimental repeats are capable of producing meaningful proteomic data. Thus, animal model proteomics can be conveniently employed for both studying basic mechanisms of molecular pathogenesis and the effects of drugs, genetic modifications or cell-based therapies on disease progression. Based on the results from comparative animal proteomics, a more informed decision on the design of clinical proteomics studies could be reached. Since no one animal model represents a perfect pathobiochemical replica of all of the symptoms seen in complex human disorders, the proteomic screening of novel animal models can also be employed for swift and enhanced protein biochemical phenotyping.  相似文献   

7.
Proteomics has a wide range of applications, including determination of differences in the proteome in terms of expression and post-translational protein modifications. Redox proteomics allows the identification of specific targets of protein oxidation in a biological sample. Using proteomic techniques, apolipoprotein A-I (ApoA-I) has been found at decreased levels in subjects with a variety of neurodegenerative disorders including in the serum and cerebrospinal fluid (CSF) of Alzheimer disease (AD), Parkinson disease (PD), and Down syndrome (DS) with gout subjects. ApoA-I plays roles in cholesterol transport and regulation of inflammation. Redox proteomics further showed ApoA-I to be highly oxidatively modified and particularly susceptible to modification by 4-hydroxy-2-trans-nonenal (HNE), a lipid peroxidation product. In the current review, we discuss the consequences of oxidation of ApoA-I in terms of neurodegeneration. ROS-associated chemotherapy related ApoA-I oxidation leads to elevation of peripheral levels of tumor necrosis factor-α (TNF-α) that can cross the blood-brain barrier (BBB) causing a signaling cascade that can contribute to neuronal death, likely a contributor to what patients refer to as “chemobrain.” Current evidence suggests ApoA-I to be a promising diagnostic marker as well as a potential target for therapeutic strategies in these neurodegenerative disorders.  相似文献   

8.
Biomarker analysis and proteomic discovery in pediatric sickle cell disease has the potential to lead to important discoveries and improve care. The aim of this review article is to describe proteomic and biomarker articles involving neurological and developmental complications in this population. A systematic review was conducted to identify relevant research publications. Articles were selected for children under the age of 21 years with the most common subtypes of sickle cell disease. Included articles focused on growth factors (platelet-derived growth factor), intra and extracellular brain proteins (glial fibrillary acidic protein, brain-derived neurotrophic factor), and inflammatory and coagulation markers (interleukin-1β, l -selectin, thrombospondin-1, erythrocyte, and platelet-derived microparticles). Positive findings include increases in plasma brain-derived neurotrophic factor and platelet-derived growth factor with elevated transcranial Dopplers velocities, increases in platelet-derived growth factor isoform AA with overt stroke, and increases in glial fibrillary acidic protein with acute brain injury. These promising potential neuro-biomarkers provide insight into pathophysiologic processes and clinical events, but their clinical utility is yet to be established. Additional proteomics research is needed, including broad-based proteomic discovery of plasma constituents and blood cell proteins, as well as urine and cerebrospinal fluid components, before, during and after neurological and developmental complications.  相似文献   

9.
Diabetes now affects more than 5% of the world's population and heart failure is the most common cause of death amongst diabetic patients. Accumulating evidence supports a view that myocardial mitochondrial structural and functional changes are central to the onset of diabetic heart failure, but the exact nature of these changes at the proteomic level remains unclear.Here we report on proteomic changes in diabetic rat heart mitochondria following 120 days of streptozotocin‐diabetes using the recently developed iTRAQ? labeling method, which permits quantification of proteins directly from complex mixtures, bypassing the limitations associated with gel‐based methods such as 2‐DE. Of 252 unique proteins identified, 144 were represented in at least three of six individual paired experiments. Relative amounts of 65 proteins differed significantly between the groups, confirming that the cardiac mitochondrial proteome is indeed impacted by diabetes. The most significant changes were increased protein levels of enzymes involved in mitochondrial oxidation of long‐chain fatty acids, which was also confirmed by enzyme assays, and decreased levels of multiple enzymes involved in oxidative phosphorylation and catabolism of short‐chain fatty acids and branched‐chain amino acids. We also found significant changes in levels of several enzymes linked to oxidative stress.  相似文献   

10.
Myofilament proteins of the cardiac sarcomere house the molecular machinery responsible for generating tension and pressure. Release of intracellular Ca(2+) triggers myofilament tension generation and shortening, but the response to Ca(2+) is modulated by changes in key regulatory proteins. We review how these proteomic changes are essential to adaptive physiological regulation of cardiac output and become maladaptive in cardiac disorders. We also review the essentials of proteomic techniques used to study myofilament protein changes, including degradation, isoform expression, phosphorylation and oxidation. Selected proteomic studies illustrate the applications of these approaches.  相似文献   

11.
Purpose: In (hemoglobin, Hb) HbEβ‐thalassemia, HbE (β‐26 Glu→Lys) interacts with β‐thalassemia to produce clinical manifestation of varying severity. This is the first proteomic effort to study changes in protein levels of erythrocytes isolated from HbEβ‐thalassemic patients compared to normal. Experimental design: We have used 2‐DE and MALDI‐MS/MS‐based techniques to investigate the differential proteome profiling of membrane and Hb‐depleted fraction of cytosolic proteins of erythrocytes isolated from the peripheral blood samples of HbEβ‐thalassemia patients and normal volunteers. Results: Our study showed that redox regulators such as peroxiredoxin 2, Cu‐Zn superoxide dismutase and thioredoxin and chaperones such as α‐hemoglobin stabilizing protein and HSP‐70 were upregulated in HbEβ‐thalassemia. We have also observed larger amounts of membrane associated globin chains and indications of disruption of spectrin‐based junctional complex in the membrane skeleton of HbEβ‐thalassemic erythrocytes upon detection of low molecular weight fragments of β‐spectrin and decrease in β‐actin and dematin content. Conclusion and clinical relevance: We have observed interesting changes in the proteomic levels of redox regulators and chaperons in the thalassemic hemolysates and have observed strong correlation or association of the extent of such proteomic changes with HbE levels. This could be important in understanding the role of HbE in disease progression and pathophysiology.  相似文献   

12.
Parkinson's disease (PD) is a complex, multifactorial neurodegenerative disease affecting about 2% of the population over 65?years. Etiopathogenetic mechanisms of PD are not fully understood, although a number of factors contributing to the selective degeneration of substantia nigra neurons have been identified, including mitochondrial dysfunction, proteasomal impairment, oxidative stress, excitotoxicity, and inflammation. Although a global view of the disease at the molecular level can be obtained only from the biochemical analysis of the affected human tissue, difficulties in obtaining human specimens of the affected area have limited substantially the number of reports published to date. Therefore, cellular and animal models of the disease have been developed to investigate single factors contributing to disease pathogenesis, e.g., protein aggregation or altered dopamine homeostasis. In this review, we report how proteomic methodologies have been used so far to investigate cellular and animal models of PD, as well as to compare postmortem specimens of substantia nigra of affected patients to that of control subjects. Proteomic studies concur to highlight the role of a compromised antioxidant defense in PD pathogenesis. The proteomic approach in the investigation of etiopathogenetic mechanisms of PD is still at its beginning, however, the findings reviewed here should serve as a useful foundation to further work.  相似文献   

13.
Eosinophils (EOSs) are granular leukocytes that have significant roles in many inflammatory and immunoregulatory responses, especially asthma and allergic diseases. We have undertaken a fairly comprehensive proteomic analysis of purified peripheral blood EOSs from normal human donors primarily employing 2‐DE with protein spot identification by MALDI‐MS. Protein subfractionation methods employed included IEF (Zoom® Fractionator) and subcellular fractionation using differential protein solubilization. We have identified 3141 proteins, which had Mascot expectation scores of 10?3 or less. Of these 426 were unique and non‐redundant of which 231 were novel proteins not previously reported to occur in EOSs. Ingenuity Pathway Analysis showed that some 70% of the non‐redundant proteins could be subdivided into categories that are clearly related to currently known EOS biological activities. Cytoskeletal and associated proteins predominated among the proteins identified. Extensive protein posttranslational modifications were evident, many of which have not been previously reported that reflected the dynamic character of the EOS. This data set of eosinophilic proteins will prove valuable in comparative studies of disease versus normal states and for studies of gender differences and polymorphic variation among individuals.  相似文献   

14.
Liver cancer is a major global health problem being the sixth most common cancer and the third cause of cancer‐related death, with hepatocellular carcinoma (HCC) representing more than 90% of primary liver cancers. Mounting evidence suggests that, compared with their normal counterparts, many types of cancer cell have increased levels of ROS. Therefore, cancer cells need to combat high levels of ROS, especially at early stages of tumor development. Recent studies have revealed that ROS‐mediated regulation of redox‐sensitive proteins (redox sensors) is involved in the pathogenesis and/or progression of many human diseases, including cancer. Unraveling the altered functions of redox sensors and the underlying mechanisms in hepatocarcinogenesis is critical for the development of novel cancer therapeutics. For this reason, redox proteomics has been developed for the high‐throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for the treatment of HCC. In this review, we will briefly introduce several novel redox proteomics techniques that are currently available to study various oxidative modifications in hepatocarcinogenesis and summarize the most important discoveries in the study of redox processes related to the development and progression of HCC.  相似文献   

15.
A variant phenotype of nonketotic hyperglycinemia has been described by our group associated with pulmonary hypertension. The aim of this study is to investigate the cerebrospinal fluid proteomes to get an insight into this neurodegenerative process producing leukoencephalopathy with white matter spongiform degeneration. DIGE and MALDI-TOF-TOF analyses were performed to carry out the proteomic study of four patients against three normal controls and one additional control of a classical nonketotic hyperglycinemia. The differential proteomic analysis showed a displacement of some series of spots toward the acidic side. The shifted proteins showed a high degree of carbonylation and increased methionine sulfoxidation was found in cystatin C and in vitamin-D-binding protein. These findings in addition to the increase of serum malondialdehyde concentration provide evidence of an oxidative stress in the patients under study, which is probably systemic rather than mainly confined to the CNS. The similarities of our findings with those found in other neurodegenerative diseases suggest that oxidative damage is commonly involved in these pathologies. DIGE technology improves the 2-D PAGE differential analysis and it is suitable in proteomic studies with a small number of cases.  相似文献   

16.
17.
Formalin fixation, followed by paraffin embedding, is long established as the standard procedure for the stabilization and preservation of tissue architecture, essential for enabling microscopic examination and long-term storage of samples. During the years, this has led to the generation of a worldwide repository of patient tissues with associated complete clinical records. As such, this represents a golden mine for all those attempting to identify proteomic signatures of disease, aimed to the understanding of pathological processes and to the identification of new biomarkers. However, access to this resource has been hampered by the stable cross-linked network generated on tissue molecules during formalin fixation. Recently, researchers have been actively working to overcome this limitation, reaching unexpected achievements. This review aims to discuss and compare the various strategies devised for extracting full-length proteins or peptides from fixed tissues, and to provide a general perspective on studies comparing matched fixed and fresh-frozen tissue proteomes, applying proteomic techniques for biomarker discovery from archival tissues, and attempting to exploit gel-based approaches. In addition, the concomitant progresses in understanding the impact of tissue processing variables and the extent and nature of formaldehyde-induced modifications are presented. In conclusion, the future perspectives and open challenges in this field are discussed.  相似文献   

18.
19.
Early accurate diagnosis and personalized treatment are essential in order to treat complex or fatal diseases such as cancer and autoimmune, cardiovascular and neurodegenerative diseases. To realize this vision, new diagnostic and prognostic biomarkers are urgently required. MS-based proteomics is the most promising approach for protein biomarker identification, but suffers in clinical translation of biomarker candidates that show only quantitative differences from normal tissue. Indeed, success in translating proteomic data to biomarkers in the clinic has been disappointing. Here, we propose that protein termini provide a new opportunity for biomarker discovery due to qualitative differences in intact and new protein termini between diseased and normal tissues. Altered proteolysis occurs in most pathologies. Disease- and process-specific protein modifications, including proteolytic processing and subsequent modification of the terminal amino acids, frequently lead to altered protein activity that plays key roles in the disease process. Thus, mapping of ensembles of characteristic protein termini provides a proteolytic signature of high information content that shows both quantitative and most importantly qualitative differences in different diseases and stage of disease. These unique protein biomarkers have the added benefit of being mechanistically informative by revealing the activity state of the bioactive protein. Moreover, proteome-wide isolation of protein termini leads to generalized sample simplification, thereby enabling up to three orders of magnitude lower LODs compared to traditional shotgun proteomic approaches. We introduce the potential of protein termini for biomarker discovery, briefly review methods enabling large-scale studies of protein termini, and discuss how these may be integrated into a termini-oriented biomarker discovery pipeline from discovery to clinical application.  相似文献   

20.
Pancreatic beta-cells have a crucial role in the regulation of blood glucose homeostasis by the production and secretion of insulin. In type 1 diabetes (T1D), an autoimmune reaction against the beta-cells together with the presence of inflammatory cytokines and ROS in the islets leads to beta-cell dysfunction and death. This review gives an overview of proteomic studies that lead to better understanding of beta-cell functioning in T1D. Protein profiling of isolated islets and beta-cell lines in health and T1D contributed to the unraveling of pathways involved in cytokine-induced cell death. In addition, by studying the serological proteome of T1D patients, new biomarkers and beta-cell autoantigens were discovered, which may improve screening tests and follow-up of T1D development. Interestingly, an important role for PTMs was demonstrated in the generation of beta-cell autoantigens. To conclude, proteomic techniques are of indispensable value to improve the knowledge on beta-cell function in T1D and the search toward therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号