首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents design considerations to be taken in designing of a low temperature differential double-acting Stirling engine for solar application. The target power source will be a thermosiphon solar water heater with integrated storage system, which will supply a constant source temperature of 70 °C. Hence, the system design is based on a temperature difference of 50 °C, assuming that the sink is kept at 20 °C. During the preliminary design stage, the critical parameters of the engine design are determined according to the Schmidt analysis, while the third order analysis was used during the design optimisation stage in order to establish a complete analytical model for the engine. The heat exchangers are designed to be of high effectiveness and low pressure-drop, and are made from a 0.015 m tube, while the porosity of the steel wool of 0.722 is used for the regenerator matrix. Upon optimisation, the optimal engine speed is 120 rpm with the swept volume of 2.3 l, and thus the critical engine parameters are found to be the bore diameter of 0.20 m. In addition, the volumes of heater, cooler and regenerator are 1.3 l, 1.3 l and 2.0 l volumes, respectively.  相似文献   

2.
In this research, a gamma-type, low-temperature differential (LTD) solar Stirling engine with two cylinders was modeled, constructed and primarily tested. A flat-plate solar collector was employed as an in-built heat source, thus the system design was based on a temperature difference of 80 °C. The principles of thermodynamics as well as Schmidt theory were adapted to use for modeling the engine. To simulate the system some computer programs were written to analyze the models and the optimized parameters of the engine design were determined. The optimized compression ratio was computed to be 12.5 for solar application according to the mean collector temperature of 100 °C and sink temperature of 20 °C. The corresponding theoretical efficiency of the engine for the mentioned designed parameters was calculated to be 0.012 for zero regenerator efficiency. Proposed engine dimensions are as follows: power piston stroke 0.044 m, power piston diameter 0.13 m, displacer stroke 0.055 m and the displacer diameter 0.41 m. Finally, the engine was tested. The results indicated that at mean collector temperature of 110 °C and sink temperature of 25 °C, the engine produced a maximum brake power of 0.27 W at 14 rpm. The mean engine speed was about 30 rpm at solar radiation intensity of 900 W/m2 and without load. The indicated power was computed to be 1.2 W at 30 rpm.  相似文献   

3.
In this study, a gamma type Stirling engine with 276 cc swept volume was designed and manufactured. The engine was tested with air and helium by using an electrical furnace as heat source. Working characteristics of the engine were obtained within the range of heat source temperature 700–1000 °C and range of charge pressure 1–4.5 bar. Maximum power output was obtained with helium at 1000 °C heat source temperature and 4 bar charge pressure as 128.3 W. The maximum torque was obtained as 2 N m at 1000 °C heat source temperature and 4 bar helium charge pressure. Results were found to be encouraging to initiate a Stirling engine project for 1 kW power output.  相似文献   

4.
The present work developed a prototype Stirling engine working at the moderate temperature range. This study attempts to demonstrate the potential of the moderate temperature Stirling engine as an option for the prime movers for Concentrating Solar Power (CSP) technology. The heat source temperature is set to 350–500 °C to resemble the temperature available from the parabolic trough solar collector. This moderate temperature difference allows the use of low cost materials and simplified mechanical designs. With the consideration of local technological know how and manufacturing infrastructure, this development works with a low charged pressure of 7 bar and uses air as a working fluid. The Beta-type Stirling engine is designed and manufactured for the swept volume of 165 cc and the power output of 100 W. The performance of engine is evaluated at different values of charge pressures and wall temperatures at the heater section. At 500 °C and 7 bar, the engine produces the maximum power of 95.4 W at 360 rpm. The thermal efficiency is 9.35% at this maximum power condition. Results show that the moderate temperature operation offers a clear advantage in terms of the specific power over the low temperature operation. In terms of the West number, the present work demonstrated that the moderate temperature difference operations could offer the performance on par with the high temperature operations with more simple and less costly development.  相似文献   

5.
This study presents test results of a Stirling engine with a lever controlled displacer driving mechanism. Tests were conducted with helium and the working fluid was charged into the engine block. The engine was loaded by means of a prony type micro dynamometer. The heat was supplied by a liquefied petroleum gas (LPG) burner. The engine started to run at 118 °C hot end temperature and the systematic tests of the engine were conducted at 180 °C, 220 °C and 260 °C hot end external surface temperatures. During the test, cold end temperature was kept at 27 °C by means of water circulation. Variation of the shaft torque and power with respect to the charge pressure and hot end temperature were examined. The maximum torque and power were measured as 3.99 Nm and 183 W at 4 bars charge pressure and 260 °C hot end temperature. Maximum power corresponded to 600 rpm speed.  相似文献   

6.
This paper provides an experimental investigation on the performance of a low-temperature differential Stirling engine. In this study, a twin power piston, gamma-configuration, low-temperature differential Stirling engine is tested with non-pressurized air by using a solar simulator as a heat source. The engine testing is performed with four different simulated solar intensities. Variations of engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number, obtained from the testing of the engine, is also investigated. The results indicate that at the maximum simulated solar intensity of 7145 W/m2, or heat input of 261.9 J/s, with a heater temperature of 436 K, the engine produces a maximum torque of 0.352 N m at 23.8 rpm, a maximum shaft power of 1.69 W at 52.1 rpm, and a maximum brake thermal efficiency of 0.645% at 52.1 rpm, approximately.  相似文献   

7.
太阳能的利用和斯特林发动机的研发符合目前解决全球能源危机问题的需要。对斯特林热机的发展过程和循环工作原理进行了总结,综述了国内外对于碟式斯特林发电技术的应用现状,归纳了碟式斯特林发电系统中太阳光跟踪控制系统、接收器聚热技术、斯特林发动机功率控制技术和斯特林发动机密封技术等关键技术的研究成果和应用现状,总结并展望了碟式斯特林发电技术的发展重心,为进一步的研究工作提供参考。  相似文献   

8.
This study deals with investigating the effect of varying dead state temperatures on exergy efficiency of a high-oleic methyl ester (HOME) fueled internal combustion engine (ICE). This engine is a 4.5L, four-stroke, four-cylinder, turbocharged, 66.5 kW maximum power capacity John Deere 4045T diesel engine run with HOME, which is genetically modified with a high-oleic soybean oil methyl ester. The test speed is 1400 min−1 at a full load. In the analysis, actual operational data obtained from a study conducted by one of the co-authors at Iowa State University, USA are used. Exergy efficiency values at various dead state temperatures are calculated for comparison purposes since these types of engines may be operated under different outdoor air conditions. The results obtained are discussed from the exergetic point of view. It was found that exergetic efficiency increased as dead state temperature decreased. As a result, exergy efficiency values ranged from 29.78% to 34.93% based on dead state temperatures between −5 °C and 30 °C.  相似文献   

9.
A new concentrator receiver containing a 7 mm×7 mm 3J concentrator solar cell with a 37.4% peak efficiency was developed. The receiver design includes a homogenizer, heat-handling (epoxy lamination) technologies and a low-resistance soldered connection and can be applied to various concentrator optics, including dish systems. The outdoor efficiency with a combination of a plastic Fresnel lens, made by low-cost injection molding, reached 27% on a hot summer day under 35.0 °C ambient temperature without additional cooling. With this newly developed receiver, mechanical engineers will be able to design their own concentrator module suitable for their environment, using their mechanical knowledge and local industrial resources. A 400X and 7056 cm2 concentrator module was fabricated with 36 concentrator receivers connected in series and the same number of newly developed dome-shaped, non-imaging Fresnel lenses. The power rating was 200 Wp. The peak outdoor efficiency on a clear sky day was 26.8±1.5%. The integrated efficiency over the course of the day was 25.3±1.4%. This is the highest module efficiency that has been achieved using a practical module size and electrical rating.  相似文献   

10.
In this communication, a 50 MWe design capacity parabolic dish Stirling engine solar power plant (PDSSPP) has been modeled for analysis, where 2000 units of parabolic dish Stirling engine each having capacity of 25 kWe were considered to get desired capacity. An attempt has been made to carry out the energetic and exergetic analysis of different components of a solar power plant system using parabolic dish collector/receiver and Stirling engine. The energetic and exergetic losses as well as efficiencies for typical PDSSPP under the typical operating conditions have been evaluated. Variations of the efficiency of Stirling engine solar power plant at the part‐load condition are considered for year‐round performance evaluation. The developed model is examined at location Jodhpur (26.29°N, 73.03°E) in India. It is found that year‐round energetic efficiency varies from 15.57% to 27.09%, and exergetic efficiency varies from 16.83% to 29.18%. The unit cost of electric energy generation (kWeh) is about 8.76 Indian rupees (INR), with 30 years life span of the plant and 10% interest rate on investment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents an investigation on finite time thermodynamic (FTT) evaluation of a solar‐dish Stirling heat engine. FTTs has been applied to determine the output power and the corresponding thermal efficiency, exergetic efficiency, and the rate of entropy generation of a solar Stirling system with a finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, and finite regeneration process time. Further imperfect performance of the dish collector and convective/radiative heat transfer mechanisms in the hot end as well as the convective heat transfer in the heat sink of the engine are considered in the developed model. The output power of the engine is maximized while the highest temperature of the engine is considered as a design parameter. In addition, thermal efficiency, exergetic efficiency, and the rate of entropy generation corresponding to the optimum value of the output power is evaluated. Results imply that the optimized absorber temperature is some where between 850 K and 1000 K. Sensitivity of results against variations of the system parameters are studied in detail. The present analysis provides a good theoretical guidance for the designing of dish collectors and operating the Stirling heat engine system.  相似文献   

12.
Stirling engine has become preferable for high attention towards the use of alternate renewable energy resources like biomass and solar energy. Stirling engine is the main component of dish Stirling system in thermal power generation sector. Stirling engine is an externally heating engine, which theoretical efficiency is as high as Carnot cycle's, but actual ones are always far below compared with the Carnot efficiency. A number of studies have been done on multi-objective optimization to improve the design of Stirling engine. In the current study, a multi-objective optimization method, which is a combination of multiple optimization algorithms including differential evolution, genetic algorithm and adaptive simulated annealing, was proposed. This method is an attempt to generalize and improve the robustness and diversity with above three kinds of population based meta-heuristic optimization techniques. The analogous interpreter was linked and interchanged to find the best global optimal solution for Stirling engine performance optimization. It decreases the chance of convergence at a local minimum by powering from the fact that these three algorithms run parallel and members from each population and technique are swapped. The optimization considers five decision variables, including engine frequency, mean effective pressure, temperature of heating source, number of wires in regenerator matrix, and the wire diameter of regenerator, as multiple objectives. The Pareto optimal frontier was obtained and a final optimal solution was also selected by using various multi-criteria decision making methods including techniques for Order of Preference by Similarity to Ideal Solution and Simple Additive Weighting. The multi-objective optimization indicated a way for GPU-3 Stirling engine to obtain an output power of more than 3 kW and an increase by 5% in thermal efficiency with significant decrease in power loss due to flow resistance.  相似文献   

13.
A new integrated combined cooling, heating and power system which includes a solid oxide fuel cell, Stirling engine, steam turbine, linear Fresnel solar field and double effect absorption chiller is introduced and investigated from energy, exergy and thermodynamic viewpoints. In this process, produced electrical power by the fuel cell and steam turbines is 6971.8 kW. Stirling engine uses fuel cell waste heat and produces 656 kW power. In addition, absorption chiller is driven by waste heat of the Stirling engine and generates 2118.8 kW of cooling load. Linear Fresnel solar field produces 961.7 kW of thermal power as a heat exchanger. The results indicate that, electrical, energy and exergy efficiencies and total exergy destruction of the proposed system are 49.7%, 67.5%, 55.6% and 12560 kW, respectively. Finally, sensitivity analysis to investigate effect of the different parameters such as flow rate of inputs, outlet pressure of the components and temperature changes of the solar system on the hybrid system performance is also done.  相似文献   

14.
As the environmental problems caused by the use of conventional fuels have risen significantly and due to the increase in fossil fuel prices, the importance of reducing society dependence on non-renewable energy sources becomes more and more urgent. It is clear that this could only happen by switching to extensive use of clean energy sources such as renewable energy sources. In this paper a technical feasibility and economic viability study of a dish/Stirling solar power plant in Greece is presented. The proposed power plant uses Dish/Stirling technology and has nominal power 10 MW. The proposed solar concentrator system consists of a primary mirror, formed by elastic film, used to focus the sun's rays onto a secondary mirror which then deviates this radiation into the receiver (Stirling engine). TRNSYS program was developed to simulate Dish/Stirling power plant operation in order to investigate its performance in Greece. The simulation predicted that the proposed power plant could produce 11.19 GWh annually. Project investment cost is approximately 27,000,000 €, while payback is achieved after 16 years of operation. The total profit at the end of the analysis period of 25 years is estimated to be 25,500,000 €.  相似文献   

15.
Test and evaluation of a solar powered gas turbine system   总被引:3,自引:1,他引:2  
This paper describes the test and the results of a first prototype solar powered gas turbine system, installed during 2002 in the CESA-1 tower facility at Plataforma Solar de Almería (PSA) in Spain. The main goals of the project were to develop a solar receiver cluster able to provide pressurized air of 1000 °C and solve the problems arising from the coupling of the receivers with a conventional gas turbine to demonstrate the operability of the system. The test set-up consists of the heliostat field of the CESA-1 facility providing the concentrated solar power, a pressurized solar receiver cluster of three modules of 400 kWth each which convert the solar power into heat, and a modified helicopter engine (OST3) with a generator coupled to the grid. The first test phase at PSA started in December 2002 with the goal to reach a temperature level of 800 °C at the combustor air inlet by the integration of solar energy. This objective was achieved by the end of this test phase in March 2003, and the system could be operated at 230 kWe power to grid without major problems. In the second test phase from June 2003 to August 2003 the temperature level was increased to almost 1000 °C. The paper describes the system configuration, the component efficiencies and the operation experiences of the first 100 h of solar operation of this very successful first test of a solar operated Brayton gas turbine system.  相似文献   

16.
Stirling engines are power machines that operate over a closed, regenerative thermodynamic cycle with the ability to use any heat source from the outside, including hydrogen, solar energy, and biomass fuels. In this work, the development of a beta‐type Stirling engine is presented. The improved similarity design and optimization methods are described in detail, as are the key parameters of the constructed prototype and the arrangement of the entire test rig. A new structure for the expansion exchangers is developed to reduce the flow loss. The performance test of the prototype engine is conducted under laboratory conditions using an electrical heating system. In this test, the temperature and the pressure of the working fluid are monitored by thermocouples and pressure sensors, respectively. The speed and the torque of the output shaft are obtained by the dynamometer. Finally, the preliminary test results with the prototype engine are shown. The maximum output shaft power can reach 288 W at 600°C and 15‐bar charge pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The temperature dependence of device parameters of polymer solar cells based on alternating copolyfluorene incorporating dioctyl-fluorene and di-thienyl-benzothiadiazole (APFO-3) mixed with [6,6]-phenyl-C61-butyric acid methylester (PCBM) was modeled theoretically by simulation and investigated experimentally under illumination of AM1.5 (100 mW/cm2). Both simulation and experimental results show photocurrent, fill factor and power conversion efficiency all increase, and the open-circuit voltages monotonically decrease with temperature increase from room temperature (RT) to 120 °C. These results can be explained by taking into account the temperature dependence of the mobility, and the thermal activation of the injection current from the electrodes. The increase of PCE with temperature is a distinguishing feature of polymer solar cells.  相似文献   

18.
This paper presents a global thermal model of the energy conversion of the 10 kWel Eurodish dish/Stirling unit erected at the CNRS-PROMES laboratory in Odeillo. Using optical measurements made by DLR, the losses by parabola reflectivity and spillage are calculated. A nodal method is used to calculate the heat losses in the cavity by conduction, convection, reflection and thermal radiation. A thermodynamic analysis of a SOLO Stirling 161 engine is made. The Stirling engine is divided in 32 control-volumes and equations of ideal gas, mass and energy conservation are written for each control-volume. The differential equation system is resolved by an iterative method developed using Matlab programming environment. Temperature, mass, density of working gas, heat transfers and the mechanical power are calculated for one Stirling engine cycle of 40 ms and for a constant direct normal irradiation (DNI). The model gives consistent results correctly fitting with experimental measurements.  相似文献   

19.
An analysis has been carried out to find out the optimum operating temperature for solar Stirling power systems. The analysis has also clearly brought out the effect of solar collector design parameters, such as, concentration ratio, overall heat loss coefficient, and heat engine parameter on the overall efficiency of solar Stirling power systems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
A truncated pyramid-type solar cooker is designed, fabricated and tested. The truncated pyramid geometry concentrates the incident light radiations towards the bottom and the glazing glass surface on the top facilitates the trapping of energy inside the cooker. One of the salient features of the proposed design is to completely eradicate the need for tracking the sun during cooking, as tracking of sun does not yield better performance. During testing, the highest plate stagnation temperature, under no-load condition, approached 140 °C and under full-load condition, water temperature inside the cooker reached 98.6 °C in 70 min. Two figures of merit, F1 and F2, were calculated and their values were 0.117° C m2/W and 0.467 °C l, respectively, meeting the standards prescribed by the Bureau of Indian Standards for solar box-type cookers. Minor modifications in design are recommended to achieve higher temperatures and reduce cooking times. The design also allows trays to be retained for use as a household dryer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号