首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
控制理论在主动队列管理中的应用   总被引:1,自引:0,他引:1  
拥塞控制中作用于网络中间节点的主动队列管理策略(AQM)是解决IP网络拥塞问题和保证QoS的重要途径.运用控制理论,首先对TCP拥塞控制机制建模,在此基础上运用经典控制理论对主动队列管理各种策略进行分析,着重对AQM的唯一候选算法——随机早期检测(RED)算法进行分析与探讨,给出针对AQM策略的比例及比例积分控制器设计.针对网络本身是一个复杂、时变与不确定性的系统,智能控制理论更适合这类对象分析,为此,引入的智能控制理论采用模糊控制和神经网络控制对AQM策略进行研究和分析.  相似文献   

2.
提出了一种基于排队延时的主动队列管理(AQM)算法,该算法力求达到高吞吐量、低排队延时、短队列长度、低丢失率和较好的公平性能,相对于其他AQM算法具有实现简单的特点. 通过排队延时代替Drop Tail网关中分组丢弃的方法监测拥塞,并设置往返时间(RTT)估值作为拥塞探测的单门限,如果某分组排队延时超过该门限,则根据显式拥塞指示(ECN)机制标记该分组以通知TCP源端采取相应措施以响应拥塞.在ns-2下仿真表明该算法能达到预期的性能.  相似文献   

3.
PID算法能较好地控制队列长度,但算法中比例积分微分系数较为敏感,基于试凑和经验的设定往往使控制效果难以保证,根据Ad Hoc网络环境参量时变的特点,推导了无线TCP/AQM模型,将递推计算修正功能引入PID算法,设计了一种基于RBF神经网络的PID的AQM,该算法可以在线调整PID控制器增益.仿真表明:在动态拓扑、无线分组丢失的AdH oc网络中,该算法取得了较好的队列控制效果.  相似文献   

4.
为了解决随机早期检测(RED)算法中参数调整困难、收敛性差等问题,提出了一种基于比例积分微分(PID)控制的RED改进算法(PID RED).算法建立了传输控制协议(TCP)/主动队列管理(AQM)负反馈控制模型,利用经典控制理论中的稳定收敛理论求取PID控制系数,根据实际平均队列长度与预期队列长度的偏差值动态调整RED最大丢包率,从而自适应地调整RED参数.仿真结果表明,PID RED算法具有更快的收敛速度和更小的队列抖动,提高了主动队列管理策略的鲁棒性.  相似文献   

5.
以串联式混合动力汽车BJUT-SHEV为研究对象,针对起停工况下模型参数摄动和外部干扰等不确定性因素对控制效果的影响,提出一种基于非线性干扰观测器理论的自适应滑模控制方法.通过引入非线性干扰观测器对系统中存在的不确定进行估计,利用估计结果补偿滑模控制器输出,以提高滑模控制器的控制性能及鲁棒性;设计自适应律对切换增益自适应调节,以削弱滑模控制器的输出抖振.基于Lyapunov理论证明了该方法的稳定性,最后通过仿真实验进一步验证了该方法的可行性及有效性.  相似文献   

6.
针对参数的不确定性和外界干扰的非线性给欠驱动无人艇(USV)的精确轨迹跟踪控制带来的挑战,提出基于改进切换增益自适应率(ISGA)的欠驱动USV滑模轨迹跟踪控制算法. 该算法结合反步法和PI滑模控制,以保证欠驱动USV跟踪并保持期望的轨迹;采用基于理想增益的ISGA算法,以提高系统的鲁棒性和抑制滑模抖振现象. 借助李雅普诺夫直接法证明轨迹跟踪控制系统的全局指数稳定性. 仿真结果显示,所提算法具有鲁棒性强、滑模抖振弱和控制精度高等优点. 相较2种先进的轨迹跟踪控制算法,所提算法的位姿控制精度提高超过25.0%.  相似文献   

7.
针对含有参数不确定的非线性系统,提出了一种自适应滑模控制(ASMC)算法。根据飞机地面滑跑特性的受力分析,建立了飞机防滑刹车系统(ABS)的地面动力学模型;通过对飞机防滑刹车系统模型的非线性分析,针对非线性系统的不确定参数提出了以双极性sigmoid函数为趋近函数的滑模控制(SMC)算法,并针对切换增益和边界层设计了自适应控制算法以减小滑模控制的抖振现象;最后采用李雅普诺夫理论分析了设计的自适应滑模算法的敛散性。MATLAB仿真结果表明,自适应滑模控制算法相较于传统的滑模算法能在更短的时间内获取跑道的最大结合系数,达到最佳滑移率,缩短刹车时间。  相似文献   

8.
针对现有AQM算法所遇到的问题,将神经网络理论和控制理论的思想相结合,采取了RED、P/PI和PID的AQM控制策略,设计了单神经元自适应PID控制器的AQM算法.仿真结果表明,该算法控制的路由器队列长度具有良好的性能.  相似文献   

9.
为解决永磁直线同步电机(PMLSM)伺服系统中存在不确定性而影响伺服精度的问题,本文提出了一种自适应模糊分数阶滑模控制(AFFOSMC)方法以保证PMLSM的动子位置精密跟随给定.首先,建立含有参数变化、外部扰动等不确定性的PMLSM数学模型.然后,设计分数阶滑模控制(FOSMC)方法以保证系统的鲁棒性.由于在实际应用中难以确定FOSMC的切换控制增益,因此采用AFFOSMC对系统的不确定性进行估计.同时,针对AFFOSMC的估计误差以及FOSMC中切换控制引起的抖振,设计自适应模糊到达调节器(AFRR)对其进行补偿.因此,在不需要不确定性边界信息的情况下,仍可实现伺服性能的进一步提高.最后,基于DSP的系统实验结果表明,本文AFFOSMC方法能够有效减弱参数变化和外部干扰等对系统造成的影响,提高系统的鲁棒性,并能精确跟踪响应.  相似文献   

10.
针对一类非线性控制系统,提出一种新的基于微粒群算法的模糊滑模控制方法。将模糊控制和滑模控制相结合,利用滑模控制使系统的跟踪误差进入给定的边界层内,启用模糊控制取代切换控制;同时为保证模糊滑模控制系统的全局稳定性,加入监督控制以柔化控制输入;最后基于微粒群算法对滑模面系数和不均匀隶属度函数因子寻优,不仅加快了系统到达滑模面的速度,减小了误差,而且有效地消除了高频抖振。仿真结果表明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号