首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对1991年7月4日至7日(“91.7”)发生在江淮流域的一次低涡切变线特大暴雨过程进行了高分辨行星边界层参数化的中尺度数值模拟。控制模拟结果揭示“91.7”江淮暴雨过程与中尺度暴雨低涡的生成和发展以及特有的动力和热力结构密切相关;气旋性涡柱,强上升运动与深厚湿舌三位一体的共存结构是暴雨低涡持续发展并产生对流云系和持续暴雨的强耦合条件;西南低空急流的发展和维持,不仅是暴雨低涡形成和持续发展的重要动  相似文献   

2.
旋转风螺旋度及其在暴雨演变过程中的作用   总被引:50,自引:2,他引:48  
利用中尺度有限区域模式MM4对1991年7月5-6日的江淮梅雨锋暴雨过程进行了数值模拟,在模拟结果可靠的基础上,用模式输出的细多格动力协调资料,根据螺旋度理论分析了这次过程中的暴雨演变以及对流层低层的中尺度低涡及地面气旋发生发展的原因。结果表明,正在旋转风螺旋度大值中心及其演变较好地应和反映了暴雨中心及造成暴雨的中尺度涡旋的发生益及演变,较大的螺旋度值是暴雨及低层中尺度低涡和地面气旋系统发生发展的  相似文献   

3.
暴雨中尺度气旋发展的等熵面位涡分析   总被引:50,自引:2,他引:50  
寿绍文  李耀辉  范可 《气象学报》2001,59(5):560-568
利用中尺度模式MM4对1991年7月5~6日的江淮梅雨锋暴雨过程进行了数值模拟。用模式输 出资料,根据湿位涡理论分析了这次暴雨过程中对流层低层的中尺度低涡及地面气旋发生发 展的原因。结果表明,在有利的等熵面形态下,具有较高湿位涡值的高层冷空气沿等熵面快 速向南下降的过程中绝对涡度增加,导致了气旋性涡旋的发展加强。  相似文献   

4.
一次江淮暴雨中中尺度低涡的数值模拟及分析   总被引:6,自引:3,他引:6  
利用MM5模式对2003年7月4—5日一次江淮梅雨暴雨过程进行了数值模拟。分析表明:暴雨与江淮地区对流层中低层中尺度低涡的发生发展有密切关系。中尺度低涡与中尺度雨团相伴移动,低涡强度与雨强的演变近于一致;低涡中心的强上升运动及低层辐合、高层辐散的配置有利于中尺度对流系统的发生发展;低涡低层有不稳定能量的积聚。应用螺旋度理论分析指出,较大的螺旋度是对流层中低层低涡发生和发展的一种有利机制。  相似文献   

5.
黄河中游一次中层低涡暴雨的中尺度数值模拟   总被引:3,自引:2,他引:3  
李小莉  惠小英 《高原气象》1995,14(3):305-313
本文采用改进的MM4中尺度模式模拟系统对造成1982年7月29日-8月2日黄河中游特大暴雨过程后一阶段强降水的低涡系统进行了中尺度数值研究。结果表明:与强降水密切相关的该中尺度系统是在登陆台风外围东南风急流影响下发展起来的具有斜压性的中尺度低涡,其风场上最强的气旋性涡旋在对流层中层。它非登陆台风变性而成,而是由新生低涡发展而成的一个对流场中高层涡旋。造成暴雨中尺度低涡发展的主要机制是非绝热湿过程。  相似文献   

6.
通过改进的MM4中尺度数值模式,对我国三次典型大暴雨过程的模拟,来探讨暴雨中尺度系统发生与发展的问题。主要结果指出:气旋性涡柱在不稳定暖湿气柱内生成和发展,以及与整个涡柱共存的上升运动的持续加强,对暴雨中尺度系统的发展具有重要的作用;地面热通量,凝结潜热释放对暴雨中尺度系统的发展有决定性的作用;各种不同的物理过程和参数化、青藏高原的构形造成的外强迫影响,以及模式空间分辨率等,对暴雨中尺度系统结构与演变以及降雨量的模拟结果均有重要的作用。  相似文献   

7.
梅雨锋暴雨中β尺度系统的结构   总被引:1,自引:0,他引:1  
黄菲  郑维忠 《气象科学》1997,17(4):307-315
本文利用中尺度数值模式MM5,选取1981年6月27日梅雨锋暴雨个例进行数值模拟,分析了梅雨锋的中β尺度雨团和中β尺度系统的空间结构特征。结果指出,在中β尺度雨团相对应的地面气压场上是中尺度低压槽或闭合的中低压系统;在雨团发生初期,其垂直结构为暖心涡柱对流斜压扰动;而在雨团发展期,发展为暖心涡柱强对流混合型低涡;在雨团衰弱期, 暖心涡柱非对流前倾填塞涡。同时还揭示了在北雨团发展南雨团减弱期,在低空  相似文献   

8.
贵州大暴雨个例形成机制数值模拟   总被引:1,自引:0,他引:1  
利用3层嵌套的中尺度数值模式MM5 V3.5,模拟了2007年6月24~25日发生在贵州中南部的一次大暴雨过程.利用模式输出的高分辨率资料,对这次暴雨天气及中尺度低涡的形成机制进行了诊断分析.模式较成功地模拟出了中尺度系统的演变和降水的分布特征.中尺度低涡的发展、稳定维持是造成贵州这次大暴雨天气的直接原因.暴雨、大暴雨出现在低涡的西南侧.在低层正涡度、辐合、强烈的上升运动和高层负涡度、辐散的有利配置下,形成深厚的上升运动柱,这种中尺度动力配置结构,不仅与暴雨区和暴雨发生时段相对应,而且是引起此次暴雨的中尺度低涡发展和持续的动力机制之一.暴雨区与强烈上升运动区,正涡度区相对应.  相似文献   

9.
程麟生  冯伍虎 《气象学报》2003,61(4):385-395
用非静力中尺度模式MM5.V3全物理湿过程和双向四重嵌套网格技术及四维资料同化分析张弛方法,对1998年7月20~22日(简称"98.7")鄂东武汉沿江地区特大暴雨进行了36 h数值模拟,结果大大改进了原二重和三重嵌套网格的模拟,特别是水平分辨率为2 km的嵌套子域D04能更正确地模拟出暴雨的落区及雨强中心,进而揭示了强暴雨β中尺度系统发生和发展的结构及演变. 其主要结果包括(1)β中尺度切变线在鄂东沿江低空强烈发展及辐合中心的出现与其β中尺度低涡的形成和发展直接关联.(2)β中尺度切变线强烈发展的垂直结构强辐合层和强辐散层复式迭置并与强上升运动耦合发展;强涡度层和强位涡度层与强辐合层互伴发展;低空湿位温中心与中空饱和水汽带共存.(3)β中尺度低涡生成的垂直结构散度和上升运动均呈双支柱状发展;涡度和位涡度均呈单支柱状发展;高湿能柱呈双支耦合发展,水汽通道呈阶梯斜升状.(4)β中尺度低涡发展的垂直结构V字型散度柱和上升运动柱互耦发展;涡度和位涡度呈双支柱状;双支高湿能柱强烈发展,阶梯斜升水汽通道变宽增厚.至此低涡发展达最强,其结构具有典型性.模拟结果还指出,发展时空分辨率更高的多重嵌套网格模拟技术和应用四维资料同化方法,将有助于更细致的了解β中尺度强对流系统发生和发展的结构及其演变,并能进一步提高对暴雨落区及雨强的预报水平.  相似文献   

10.
通过对我国三次(“81.7”、“81.8”和“91.7”)典型大暴雨过程的动力学和热力学诊断来探讨暴雨中尺度系统发生与发展的问题。大、中尺度天气分析指出,无论是发生在我国东部的“91.7”暴雨过程,还是出现在西部地区的“81.7”和“81.8”暴雨过程,都与在特定大尺度环流形势下持续发展的中尺度系统直接关联。涡度诊断表明,高、低空正涡度中心的叠加和耦合、并形成一个正涡度柱是这类暴雨中尺度系统持续发展的一种共同特征。根据场分解涡度方程获得的涡源诊断表明,涡源对这类中尺度系统的发生和发展具有重要的动力学贡献。中尺度热量和水汽收支诊断揭示,视热源 Q_1和视水汽汇 Q_2的垂直积分高值区,与低涡或低涡切变线及其暴雨区基本一致;Q_1(Q_2)的面积平均最大加热(增湿)区间出现在对流层中、上(下)部;由于感热和潜热对流涡动通量辐合的加热,在其上部近乎等于凝结释放潜热量的一半。  相似文献   

11.
江淮气旋暴雨中的能量收支   总被引:1,自引:0,他引:1  
韦统健  胡迪 《气象科学》1996,16(1):12-19
本文利用MM4模式对91年7月6-7日江淮气旋暴雨过程进行了模拟并将输出结果用于能量平衡计算。  相似文献   

12.
"98.7"突发性特大暴雨中尺度切变线低涡发展的涡源诊断   总被引:1,自引:26,他引:1  
冯伍虎  程麟生 《高原气象》2002,21(5):447-456
1998年7月20~23日(简称“98.7”)发生在武汉周边地区的特大暴雨过程与沿低涡切变线相继生成和强烈发展的MαCS及MβCS直接关联。利用MM5模拟提供的高空间分辨(20km)输出资料,对这次突发性特大暴雨中尺度切变线低涡发展的动力学机制进行了诊断。涡度分析指出,高、低空正涡度中心在武汉周边地区上空的叠加和耦合是该低涡切变线持续发展的主要物理机制之一。总涡源的诊断揭示,在突发性暴雨强烈发生发展期,武汉周边地区上空从低层到高层有一近乎垂直的涡源高值区生成和维持,其垂直结构的发展演变与涡度场垂直结构的发展演变相一致。这一结果表明,大气总涡源对该中尺度低涡切变线的生成和发展起着决定性作用,也是该暴雨中尺度系统持续发展的重要动力学机制。对贡献于总涡源的诸分量计算表明,在650hPa以下,散度项对大气总涡源的正贡献最大,但在此层以上至200hPa之间,垂直涡度平流项的贡献要比散度项大,同时水平平流项也为正贡献;在整个对流层,扭转项对总涡源为负贡献,散度项只在450~250hPa之间为负贡献。在近地层,垂直涡度平流项和水平平流项基本对总涡源不作任何贡献。时间平均涡源和纯扰动涡源对低涡切变线的生成很重要;在强烈发展期,相互作用涡源作用最大,纯扰动涡源贡献次之;随着非线性相互作用涡源贡献的减小,低涡切变线东移减弱。在该期间时间平均涡源和纯扰动涡源仍为正贡献。  相似文献   

13.
"987”突发大暴雨及中尺度低涡结构的分析和数值模拟   总被引:64,自引:13,他引:64       下载免费PDF全文
程麟生  冯伍虎 《大气科学》2001,25(4):465-478
1998年7月20~23日(简称"987”),发生在鄂东和鄂西南地区的突发性特大暴雨过程在长江流域是罕见的.该过程与500hPa短波槽和700hPa低涡切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统密切相关.对该过程采用非静力MM5的二重网格双向嵌套进行了全物理过程的数值模拟,其中,可分辨尺度降水采用Reisner混合相微物理显式方案,次网格尺度降水采用Grell积云参数化方案.双向嵌套的细网格模拟结果揭示,武汉周边地区的特大暴雨与700hPa上一个β中尺度低涡的生成和强烈发展直接关联.该低涡具有明显的动力-热力结构特征:特强上升运动与饱和气柱互耦,超强散度柱与强涡柱耦合发展,湿静力不稳定与湿对称不稳定共存,深对流湿气柱内云团发展的微物理场结构比较典型.细网格域内前36h的降水分布和雨强与观测的大体相应,扩展域细网格的降水模拟明显改进了原细网格的模拟,特别是雨带.这一结果还表明,对持续时间较长的大暴雨,大尺度过程对中尺度系统的影响是重要的.  相似文献   

14.
隆霄  潘维玉  邱崇践  赵建华 《高原气象》2009,28(6):1335-1347
利用常规观测资料\, 卫星观测的高时空分辨率TBB资料以及客观分析资料, 对2002年6月22~23日(“02.6”)一次非典型的梅雨锋暴雨过程进行了天气分析。在此基础上, 利用中尺度数值模式MM5对此次梅雨锋暴雨过程进行了数值模拟, 并分析了暴雨中尺度系统的结构特征。结果表明: (1)天气分析显示, “02.6”梅雨锋暴雨过程与α中尺度低涡的东移发展和对流层低层的两支低空急流的增强发展有关。对流层低层700 hPa为一个缓慢东移与南压的东北西南向冷式切变线, 暖式切变线不太明显, 这与通常的江淮切变线梅雨锋暴雨不同。对流层500 hPa的副热带高压非常强, 高层200 hPa对流层高层的反气旋环流非常强并与高空急流相伴, 南亚高压中心位于我国江南地区。(2)TBB资料分析表明, 此次暴雨过程产生与多个β中尺度系统合并发展成α中尺度系统以及此后从α中尺度系统中不断分裂出β中尺度系统发展演变密切相关; 强中尺度对流系统主要在中尺度低涡冷、 暖切变线的的南侧发生和发展, 并不是在中尺度低涡的冷暖切变线上发展。(3)垂直结构分析显示: 在中尺度系统开始发展阶段, 中尺度系统具有强的垂直于剖面的风分量切变、 低空急流核以及高空强辐散低空强辐合, 这有利于中尺度系统的发展; 当中尺度低涡发展到相对成熟的阶段, 其后部不断分裂出中小尺度系统, 对流层低层的θe具有明显暖心结构, 由于气块绝热上升冷却效应比对流潜热释放作用强, 导致在800~600 hPa层上 θe比环境的低, 加之在强上升运动的顶部两侧的下沉补偿气流也比较弱, 这不利于中尺度低涡的维持。  相似文献   

15.
采用常规气象观测、地面加密降水资料、FY-2E卫星逐时TBB资料以及WRFV3.3高分辨率模式输出资料,对2010年7月12—13日安庆罕见特大暴雨过程的中尺度对流系统的发生发展、结构特征及形成原因进行了综合分析。WRFV3.3中尺度非静力模式很好地模拟了此次切变线暴雨的雨带走向、几个暴雨中心的位置和强度,以及中尺度对流系统的整个发展过程。分析结果表明:此次特大暴雨是在高层200 hPa强大的南亚高压稳定少动,中层500 hPa的短波槽的生成、转向和发展与副高的维持,低层的700 hPa和850 hPa中尺度低涡、切变线以及地面梅雨锋扰动的共同作用下造成的;700 hPa低涡、切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统是这次特大暴雨的直接制造者。细网格模拟结果揭示,安庆特大暴雨与850 hPa上的β中尺度对流系统(MβCS)的生成和强烈发展直接相关。该MβCS具有明显的动力—热力结构特征,显示:强上升运动与饱和气柱的耦合,强散度柱与强涡柱的耦合发展,强上升运动与位势不稳定的耦合发展,湿静力不稳定与湿对称不稳定共存。  相似文献   

16.
利用NCEP再分析资料,应用WRF模式对2014年6月20—22日江西省北部低涡暴雨过程进行模拟,分析暴雨过程的环流形势、低涡的热力、动力作用和水汽输送特征。结果表明:低层中尺度低涡是此次暴雨过程形成的主要系统,暴雨区位于低涡中心附近和南侧的西南急流出口区,低涡中心上空假相当位温高能舌对应较强降水中心。低涡南侧急流出口区强偏南气流加强,为低涡发展提供了必要的能量和水汽条件,水汽的强辐合中心位于低涡中心的右前方。暴雨过程中整层水汽通量梯度大值区位于低涡东南侧。湿位涡"上正下负"的垂直分布结构有利于强降水的发生,强的负湿位涡度柱与暴雨中心有较好的对应关系。  相似文献   

17.
一次华南低空急流暴雨的数值模拟   总被引:11,自引:2,他引:11  
利用中尺度数值模式MM4对一次无明显锋面系统配合的α-尺度华南低空急流引起的暴雨过程进行了模拟。结果表明,MM4可利用ECMWF的大尺度资料成功地模拟此次过程,而利用模式输出的连续高分辨的结果,可以做大量的分析工作;在缺少高分辨中尺度实测资料的情况下探讨低空急流的结构,机制及它与暴雨的关系等问题提供了很好的可借鉴的方法。  相似文献   

18.
“96·8”特大暴雨和中尺度系统发展结构的非静力数值模拟   总被引:11,自引:0,他引:11  
1996年 8月 3~ 5日 (“96· 8”) ,中国河南、山西、河北等省发生了一次特大暴雨过程 ,造成了严重洪涝灾害。文中的天气分析指出 ,稳定的大型鞍形场和北移台风 (登陆后减弱为低压 )与其东侧副热带高压的相互作用是“96· 8”特大暴雨发生的大、中尺度环流条件 ;而中尺度低压及其特有的动力热力结构与该暴雨过程直接相关。对该过程采用非静力中尺度数值模式 (MM5)进行了数值模拟研究。模拟结果分析发现 ,非静力 (MM5)的全物理过程模拟基本上可再现大尺度和中 -α尺度天气系统的发生、发展和演变。采用二重网格双向嵌套技术的细网格模拟结果揭示 ,低压的动力场和热力场之间具有一种强耦合机制 ,即发展的低压具有气旋性涡柱的暖心高湿结构 ,在涡柱低空是湿对流不稳定和负湿位涡结构 ;强垂直上升运动与高空强辐散和低空强辐合以及对流云团的发展互耦 ;与低压相伴的强南风急流不仅是低压和对流云团发展与维持的互伴互耦条件 ,而且也是“96· 8”特大暴雨的水汽源和热能输送带。降水模拟结果分析表明 ,尽管某些降水中心对粗网格偏小 ,对细网格偏大 ,但雨带和雨强分布与观测结果基本一致。  相似文献   

19.
东风波诱生低涡发生发展的螺旋度演变特征分析   总被引:1,自引:4,他引:1  
郑峰 《气象科技》2006,34(3):275-279
利用NCEP 1°×1°再分析资料对2001年8月3~4日浙南闽北的东风波暴雨过程,根据螺旋度(Helicity)分析了过程中的暴雨演变以及雁荡山脉诱生中尺度低涡发生发展的原因。同时,利用中尺度有限区域模式MM5V2对该东风波诱生中尺度低涡进行模拟。结果表明:螺旋度大值中心强度和位置的演变较好地反映了暴雨落区和中尺度低涡的诱生、移动,螺旋度的时空演变对暴雨发生有一定的预示意义,螺旋度计算较中尺度模式得出诱生低涡初生位置、路径预报准确率高,二者集成可以提高诱生低涡的预报准确率。  相似文献   

20.
在2012年7月21日北京特大暴雨过程天气尺度环流背景分析的基础上,主要用WRF模式对该次暴雨过程进行了高分辨率的模拟。利用模拟资料分析了影响此次北京特大暴雨的辐合线及辐合线上生成的中尺度低涡的热动力结构及其演变。从热力场来看,来自于西北和东北方向的强冷空气与西南和东南暖湿气流的长时间对峙形成的辐合以及中低层冷空气从西北和东北方向向西南的入侵迫使整层暖湿空气抬升,以及低空急流的暖湿平流与低空弱冷空气之间形成的"西冷东暖"的结构,对对流不稳定的触发有一定作用,有助于该次特大暴雨的发生。对流层低层的西(东)南风与西北风之间形成了一条持续时间长的辐合切变线,切变线上不断有中尺度低涡生成并沿切变线发展移动,模拟资料分析表明,低涡不断沿切变线生成并移动经过北京从而对该次暴雨造成影响,这与"列车效应"现象类似。切变线上生成的中尺度低涡位置也同时处于急流左前侧和山前,低涡加强和发展时对应有暴雨的明显增强,是直接造成北京特大暴雨的中尺度系统,其生成与低层辐合、低空急流及地形均有关系。低层辐合引发的垂直运动在地形迎风坡附近得到加强,低层辐合及地形抬升共同导致了强垂直运动的发展和维持,是暴雨持续的重要原因。大气中层有下沉气流与低层上升气流相互作用,在大气中低层形成一系列中尺度环流,房山附近一直有中尺度环流的垂直上升支维持,也是暴雨中心出现在房山的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号