首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从工程化应用角度研究了常压空气等离子体改性对超高分子量聚乙烯(UHMWPE)纤维/环氧树脂复合材料界面性能的调节机制,主要分析了不同处理时间对UHMWPE纤维表面状态变化的影响,及其对UHMWPE/环氧树脂复合材料界面黏结性能的影响规律。采用SEM及纤维吸水测试研究了等离子体处理对UHMWPE纤维表面物理形貌及纤维表面浸润性能的影响,分别以拉伸和弯曲的方式,通过纤维表面脱黏力及层合板层间剪切强度对UHMWPE/环氧树脂复合材料的界面黏结性能进行表征。结果表明,仅经过4 s的空气等离子体处理之后,UHMWPE纤维表面脱黏力的提高幅度为84.0%,UHMWPE/环氧树脂复合材料层合板的层间剪切强度由未处理的7.01 MPa提高至15.81 MPa,增幅高达125.5%。研究发现,通过常压空气等离子体处理改变了UHMWPE纤维的表面状态,可以显著高效地调节UHMWPE/环氧树脂复合材料的界面性能,为扩大该材料的后续工程化应用提供了理论基础。   相似文献   

2.
UHMWPE 纤维表面处理及其复合材料性能   总被引:11,自引:3,他引:8       下载免费PDF全文
对超高分子量聚乙烯(U HMWPE) 纤维进行了铬酸液相氧化和上胶剂表面涂覆的复合表面处理, 并对U HMWPE 纤维表面处理前后与几种不同结构的环氧树脂基体制备的复合材料进行界面性能研究。结果表明: 树脂种类对复合材料界面性能略有影响, 但层间剪切强度都较低。对纤维进行单纯的液相氧化和表面涂覆均可以提高复合材料的界面性能, 但液相氧化处理时间过长会使纤维强度降低; 而液相氧化2涂覆的复合处理则具有协同效应, 在不降低纤维强度的同时大幅度提高复合材料的层间剪切强度, 是一种有效的表面处理方法。   相似文献   

3.
针对超高分子量聚乙烯(UHMWPE)纤维与基体之间界面结合强度低的问题,采用超声波结合铬酸溶液氧化的复合工艺对UHMWPE纤维进行表面处理,并将处理后的纤维加入到天然橡胶(NR)中制备短切UHMWPE纤维/NR复合材料。结果表明:复合改性工艺可有效增加纤维表面粗糙度及表面含氧官能团含量,最佳改性工艺条件为:按照重铬酸钾、水及浓硫酸的质量比7∶12∶150配置铬酸溶液,将含有一定质量UHMWPE纤维的铬酸溶液放入35℃的超声波清洗仪中氧化5min,其中超声波频率为100kHz。与纯NR样品相比,在UHMWPE纤维与NR的质量比为0~6∶100范围内,随着处理后短纤维含量的增加,复合材料的拉伸强度逐渐减小,最大损失量达到50%;复合材料的硬度不断增大,最大增加量达到96%;复合材料的撕裂强度先增大后减小,在UHMWPE纤维与NR的质量比为5∶100时达到最大值,最大增加量达到49%。  相似文献   

4.
采用单丝复合体系多次断裂法,通过对纤维单丝断点数的统计及其断点形貌的分析,考察了PBO纤维、芳纶Twaron纤维、超高分子量聚乙烯纤维(UHMWPE)3种高性能有机纤维与韧性环氧基体的界面剪切强度;并对比考察了界面剪切强度与对应复合材料单向板层间剪切强度之间的关系;结合XPS、SEM等手段分析了有机纤维表面物理化学特性对界面剪切强度的影响。结果表明,Twaron/环氧的界面剪切强度高于PBO/环氧,UHMWPE/环氧的界面粘结弱,该方法不能测试;上述体系界面剪切强度与对应的复合材料单向板层间剪切强度变化趋势是一致的;表面化学活性高的纤维对应的界面剪切强度高。  相似文献   

5.
Cosmic radiation shielding properties are important for spacecraft, and hydrogenous materials such as polyethylene have been shown to be effective in shielding against galactic cosmic rays and solar energetic particles. Ultrahigh molecular weight polyethylene (UHMWPE) fibers, which are effective in such shielding, also have advanced mechanical and physical properties, which potentially are very valuable for NASA space missions both as a radiation shield and as vehicle structure. In our previous studies, we fabricated a nano-epoxy matrix with reactive graphitic nanofibers that showed enhanced mechanical (including strength, modulus and toughness) and thermal properties (higher Tg, stable CTE, and higher ageing resistance), as well as wetting and adhesion ability to UHMWPE fibers. In this work, the radiation shielding performance of the UHMWPE fiber reinforced nano-epoxy composite was characterized by radiation tests at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results showed that the high radiation shielding performance associated with UHMWPE was not degraded by the addition of graphitic nanofibers in the matrix. Together with the previous studies showing higher mechanical properties, these new studies validate the importance of the UHMWPE fiber/nano-epoxy composite for potential applications in more durable space composites and structures, and offer reduced manufacturing costs and wider design applications through avoidance of specialized and in some cases ineffective UHMWPE fiber surface treatment processes.  相似文献   

6.
生物酶催化UHMWPE纤维表面改性   总被引:3,自引:2,他引:1       下载免费PDF全文
以辣根过氧化物酶(HRP)为催化剂,在H2O2存在下,氧化邻甲氧基酚形成自由基,引发超高分子量聚乙烯纤维(UHMWPE)表面接枝聚丙烯酰胺,达到其表面改性的目的。通过正交实验确定了表面接枝的最佳条件:反应时间为1.5 h,H2O2的浓度为0.03%,邻甲氧基酚的浓度为0.5%。纤维单丝拔出实验结果表明,酶法改性的UHMWPE纤维/环氧树脂体系的界面粘结强度有明显提高,最大拔出强度比原纤维提高了69.8%。电镜扫描及红外光谱表征结果显示,改性后的UHMWPE纤维表面的粗糙度增加,并有新基团产生。   相似文献   

7.
The degree of fiber–matrix adhesion and its effect on the mechanical reinforcement of short henequen fibers and a polyethylene matrix was studied. The surface treatments were: an alkali treatment, a silane coupling agent and the pre-impregnation process of the HDPE/xylene solution. The presence of Si–O–cellulose and Si–O–Si bonds on the lignocellulosic surface confirmed that the silane coupling agent was efficiently held on the fibres surface through both condensation with cellulose hydroxyl groups and self-condensation between silanol groups.

The fiber–matrix interface shear strength (IFSS) was used as an indicator of the fiber–matrix adhesion improvement, and also to determine a suitable value of fiber length in order to process the composite with relative ease. It was noticed that the IFSS observed for the different fiber surface treatments increased and such interface strength almost doubled only by changing the mechanical interaction and the chemical interactions between fiber and matrix.

HDPE-henequen fiber composite materials were prepared with a 20% v/v fiber content and the tensile, flexural and shear properties were studied. The comparison of tensile properties of the composites showed that the silane treatment and the matrix-resin pre-impregnation process of the fiber produced a significant increase in tensile strength, while the tensile modulus remained relatively unaffected. The increase in tensile strength was only possible when the henequen fibers were treated first with an alkaline solution. It was also shown that the silane treatment produced a significant increase in flexural strength while the flexural modulus also remained relatively unaffected. The shear properties of the composites also increased significantly, but, only when the henequen fibers were treated with the silane coupling agent. Scanning electron microscopy (SEM) studies of the composites failure surfaces also indicated that there is an improved adhesion between fiber and matrix. Examination of the failure surfaces also indicated differences in the interfacial failure mode. With increasing fiber–matrix adhesion the failure mode changed from interfacial failure and considerable fiber pull-out from the matrix for the untreated fiber to matrix yielding and fiber and matrix tearing for the alkaline, matrix-resin pre-impregnation and silane treated fibers.  相似文献   


8.
《Composites Part A》2005,36(7):987-994
The fracture surface morphology of short fiber reinforced thermoplastics (SFRTs) has often been used to assess qualitatively the degree of fiber–matrix interfacial adhesion. Mechanical properties such as tensile strength, fracture toughness and failure strain, etc. are then correlated with the morphology. Fracture surfaces showing fibers surrounded by a large amount of matrix material is commonly regarded as indication of strong fiber–matrix interfacial adhesion while smooth fibers are characteristic of weak interfacial adhesion. Many experimental results of SFRTs have been so interpreted. However, it is shown in this paper that strictly speaking, such interpretations are generally incorrect. Moreover, the amount of matrix material does not provide a quantitative measure of the adhesion. Correct implication of the morphology of fracture surfaces is clarified. Short glass fiber reinforced polyamide 6,6/polypropylene (PA 6,6/PP) blends toughened by rubber are employed as examples for SFRTs since the PA 6,6/PP blend system by changing PA 6,6 concentration in the matrix blend represents a wide range of matrix materials. It is demonstrated that the fracture surface morphology of such composites is dependent on both fiber–matrix interfacial adhesion strength and matrix shear yield strength. Consequently, tensile failure strain is well correlated with the post-mortem fracture surface morphology of these SFRTs.  相似文献   

9.
《Composites Part A》2007,38(3):699-709
Though ultra high molecular weight polyethylene (UHMWPE) fiber made of carbon and hydrogen has superior mechanical properties and effective cosmic shielding properties, it shows weak composite properties due to poor interfacial adhesion between UHMWPE fibers and polymer matrix. In this study, functionalized graphitic nanofibers (GNFs) were treated further using the sonication method. High-level sonication with a series of conditions was employed for the treatment of functionalized GNFs. submicron particle size analyzer and transmission electron microscope (TEM) were used to study effects on the length and morphology of treated nanofibers by sonication conditions. The sonication conditions were optimized for preparation of a nano-epoxy matrix containing well-dispersed, reactive, functionalized graphitic nanofibers. The adhesion ability of the nano-epoxy to UHMWPE fiber was investigated. Bundle fiber pullout specimens with single and double-ends were designed and prepared for study of the adhesion property of the nano-matrix with UHMWPE fiber. Test results showed that the nano-epoxy matrix could effectively improve interfacial adhesion property with UHMWPE fiber.  相似文献   

10.
Plasma surface modification of advanced organic fibres   总被引:1,自引:0,他引:1  
Aramid and extended-chain polyethylene fibres have been treated in ammonia and oxygen plasmas in order to enhance adhesion to vinylester resins and thereby improve fibre/resin interfacial properties in composites made from these materials. For both aramid/vinylester and extended-chain polyethylene/vinylester composites, the plasma treatments result in significant improvements in interlaminar shear strength and flexural strength. Extended-chain polyethylene/vinylester composites also exhibit increased flexural modulus. Scanning electron and optical microscopic observations have been used to examine the microscopic basis for these results, which are compared with results previously obtained for aramid/epoxy and extended-chain polyethylene/epoxy composites. It is concluded that the increased interlaminar shear and flexural properties of vinylester matrix composites are due to improved wetting of the surface-treated fibres by the vinylester resin, rather than covalent chemical bonding.  相似文献   

11.
Structural, mechanical and tribological properties of composite materials based on ultra-high molecular weight polyethylene reinforced with carbon fibers were investigated. The effect of surface modification of carbon fibers on the interaction at the fiber–matrix interface in UHMWPE based composites was studied. It was found that the thermal oxidation of carbon fibers by air oxygen at 500 °C can significantly enhance the interfacial interaction between the polymer matrix and carbon fibers. This allowed us to form composite materials with improved mechanical and tribological properties.  相似文献   

12.
分别采用日本东丽T800H和国产T800碳纤维作为增强体,采用热压罐工艺制备双马来酰亚胺树脂基复合材料。研究了2种碳纤维的表面物理和化学状态,复合材料的微观界面性能及力学性能。结果表明:国产T800碳纤维表面沟槽分布较多,表面粗糙度较高,有利于与树脂基体形成更好的物理结合作用。同时,国产T800碳纤维表面具有较多的含氧官能团,有利于与基体树脂形成更好的化学结合作用。因此,国产T800碳纤维的界面剪切强度较T800H碳纤维高约27%。国产T800/HT-280复合材料的力学性能均普遍高于T800H/HT-280复合材料,其中,90°拉伸强度高约25%,面内剪切强度、弯曲强度高约12%,层间剪切强度高约7%。   相似文献   

13.
The effect of chemical etching on the surface of ultra-high molecular weight polyethylene (UHMW-PE) fibres with emphasis on the adhesion of epoxy to the fibres was studied. The presence of an oxygen-rich weak boundary layer on the non-polar UHMW-PE fibre yields poor adhesion for the as-received fibre and for fibres etched with the weaker etchants. A significant improvement in adhesion resulted when the weak boundary layer was removed and the UHMW-PE oxidized through etching with chromic acid, a stronger etchant. This significant improvement in adhesion was reflected not only in a higher interfacial shear strength but also in the presence of epoxy cohesive failure. The debonding of droplet microbonds was found to be a suitable technique for the characterization of adhesion in the UHMW-PE/epoxy system.  相似文献   

14.
Carbon fiber-reinforced thermoplastic composites have not been considered as constituent materials for structural parts due to the poor interfacial adhesion between the fiber and the thermoplastic matrix. In this work, polyamide 6 (PA6) composites with pitch carbon fibers (pCF) were fabricated by alternatively stacking PA6 films and pCF fabrics followed by being pressed. In order to improve the interfacial adhesion, phenoxy resin-based materials were coated on the surface of the fiber. The surface analyses of the fiber were carried out by XPS, TGA and dynamic contact angle method. Interlaminar shear strength (ILSS) of the composites was measured to evaluate the effect of the coating materials. The results showed that the composites with the coated pCF had higher ILSS than that with neat pCF by more than 20%. This indicated that a proper coating material can improve mechanical properties of the PA6 composites, which can be applied to the structural parts.  相似文献   

15.
电子束固化复合材料界面   总被引:3,自引:1,他引:2       下载免费PDF全文
电子束固化复合材料界面粘结性能较低是急待解决的问题。利用阳极氧化技术和偶联剂涂层对碳纤维表面进行处理。处理前后的碳纤维表面性能利用SEM、XPS和接触角测试方法进行分析,通过层间剪切强度表征电子束固化复合材料界面粘结性能,并且与热固化复合材料进行对比。结果表明: 当碳纤维在酸性电解液中进行阳极氧化时,有利于提高电子束固化复合材料界面粘合性能,在碱性电解液中进行阳极氧化时, 则导致较低界面粘接性能。阳极氧化与偶联剂双重增效作用能够提高电子束固化复合材料界面粘合性能。  相似文献   

16.
为实现聚乙烯单聚合物复合材料(PE SPC)的嵌件注射成型,研究基体与增强体间的界面非常关键.本文采用超高分子量聚乙烯(UHMWPE)纤维增强低密度聚乙烯(LDPE)基体,对纤维和基体进行了差示扫描量热仪测试,在偏光显微镜下模拟了基体与纤维的复合过程,研究不同因素对复合材料界面结晶形态的影响.根据DSC确定了UHMWPE和LDPE复合的温度范围在110.98~147.14℃;合适的温度和剪切作用都有利于界面横晶的产生,从而使基体和纤维产生更好的粘结,提高复合材料的力学性能;温度比剪切的影响更大,注射温度设置在125~135℃可在保证纤维与基体复合的情况下不破坏纤维的增强作用;纤维丝之间会相互影响界面结晶形态,部分界面有横晶产生,说明在实际注射成型过程中纤维束或纤维布的结构对基体渗透和界面形成有较大影响.  相似文献   

17.
In vitro endothelial cell (EC) seeding onto biomaterials for blood-contacting applications can improve the blood compatibility of materials. Adhesive proteins adsorbed from serum that is supplemented with the culture medium intercede the initial cell adhesion and subsequent spreading on material surface during culture. Nevertheless, physical and chemical properties of vascular biomaterial surface fluctuate widely between materials resulting in dissimilarity in protein adsorption characteristics. Thus, a variation is expected in cell adhesion, growth and the ability of cell to resist shear stress when tissue engineering on to vascular biomaterials is attempted. This study was carried out with an objective to determine the significance of a matrix coating on cell adhesion and shear stress resistance when cells are cultured on materials such as polytetrafluoroethylene (PTFE, Teflon) and polyethyleneterephthalate (Dacron), ultra high molecular weight polyethylene (UHMWPE) and titanium (Ti), that are used for prosthetic devices. The study illustrates the distinction of EC attachment and proliferation between uncoated and matrix-coated surfaces. The cell attachment and proliferation on uncoated UHMWPE and titanium surfaces were not significantly different from matrix-coated surfaces. However, shear stress resistance of the cells grown on composite coated surfaces appeared superior compared to the cells grown on uncoated surface. On uncoated vascular graft materials, the cell adhesion was not supported by serum alone and proliferation was scanty as compared to matrix-coated surface. Therefore, coating of implant devices with a composite of adhesive proteins and growth factors can improve EC attachment and resistance of the cells to the forces of flow.  相似文献   

18.
Textile-reinforced composites have become increasingly attractive as protection materials for various applications, including sports. In such applications it is crucial to maintain both strong adhesion at fibre–matrix interface and high interfacial fracture toughness, which influence mechanical performance of composites as well as their energy-absorption capacity. Surface treatment of reinforcing fibres has been widely used to achieve satisfactory fibre–matrix adhesion. However, most studies till date focused on the overall composite performance rather than on the interface properties of a single fibre/epoxy system. In this study, carbon fibres were treated by mixed acids for different durations, and resulting adhesion strength at the interface between them and epoxy resin as well as their tensile strength were measured in a microbond and microtensile tests, respectively. The interfacial fracture toughness was also analysed. The results show that after an optimum 15–30 min surface treatment, both interfacial shear strength and fracture toughness of the interface were improved alongside with an increased tensile strength of single fibre. However, a prolonged surface treatment resulted in a reduction of both fibre tensile strength and fracture toughness of the interface due to induced surface damage.  相似文献   

19.
The ability to tailor interfacial shear strength for a particular fiber and resin system is critical to the development of composite materials that perform optimally in specific applications. One approach to tailor the interface is to introduce a secondary phase between the fiber and matrix, which can act to functionally grade the material properties and enhance load transfer across the interface. This approach has been applied in the past using nanowires, nanotubes, and whiskers and was demonstrated to significantly enhance interface performance. Unfortunately, these processes lack control over the interphase morphology to allow design of the interface for optimal properties. Recently, ZnO nanowires grown on the surface of carbon fibers have demonstrated more than a 110% increase in interfacial strength [1]. Unlike other treatments, this interfacial reinforcement allows precise morphology control. Here, we develop the parameters for the growth of nanowires with varying lengths and diameters and study the influence of the nanowire’s morphology on the interfacial shear strength. ZnO nanowire arrays are grown on carbon fibers, with nanowire diameters ranging from 50 to 200 nm and lengths up to 4 μm. The interfacial shear strength with varying nanowire dimensions is shown to increase by up to 228%, ranging from 45.72 to 154.64 MPa. Unlike existing whiskerization approaches, it is shown that the tensile strength of the ZnO nanowire coated fibers remains constant throughout all growth procedures. The development of an interphase offering control over the interface strength and toughness will provide a means to produce multifunctional composites with optimized performance for multiple applications.  相似文献   

20.
Gamma-ray radiation was used to surface treat PAN carbon fibers. The efficiency of gamma-ray radiation was compared with air oxidation in terms of variations in the surface structure of carbon fibers and the mechanical performance of their composites. It was observed that the composites reinforced with the gamma-radiated carbon fibers showed higher interfacial adhesion strength and thus better flexural and shear properties than the composites reinforced with air-treated fibers. The observed higher content of carboxyl group on the surface of the gamma-radiated carbon fibers is likely to be responsible for the stronger fiber-matrix bonding. It is concluded that gamma-ray radiation is an effective approach of tailoring surface properties of carbon fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号