首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Au-NiOx/g-C3N4 (graphitic C3N4) nanocomposite is synthesized and utilized as catalyst for the electrochemical oxidation of methanol in the alkaline electrolyte. Au and Ni nanoparticles are uniformly dispersed on ultrathin g-C3N4 nanosheets by in-situ synthesis with nickel nitrate and chloroauric acid as Ni and Au resource respectively. The structure, morphology and component of the prepared nanocomposites are characterized by different techniques like transmission electron microscopy, X-ray diffraction, elemental mapping image and X-ray photoelectron spectroscopy. The results prove that the nanoparticles are well-distributed and embedded in g-C3N4 nanosheets. The electrochemical performance of different nanocomposite for methanol oxidation reaction (MOR) is tested under alkaline conditions via electrochemical technologies. Compared to the pure g-C3N4 and Au/g-C3N4, the NiOx/g-C3N4 exhibits electrochemical catalytic effect toward methanol electro-oxidation with the existence of Ni. This electrochemical catalytic performance is enhanced significantly for the Au-NiOx/g-C3N4, whose oxidation peak current density is 2.32 times higher than NiOx/g-C3N4. The slope value drew from the Tafel plots shows that the Au-NiOx/g-C3N4 owns the lowest Tafel slope (67.00 mV/dec). After the 7200 s stability test, the Au-NiOx/g-C3N4 catalyst can still maintain a high current density. Long-term stability and good anti-poisoning ability promise Au-NiOx/g-C3N4 a competitive non-Pt catalyst for the methanol oxidation.  相似文献   

2.
This article reported a series of g–C3N4–CNS (g-C3N4 and carbon nanosheets) composite carriers formed by the hydrothermal method, and then the ethylene glycol reduction method was used to anchor Pt nanoparticles on the g–C3N4–CNS carrier to form the Pt/g–C3N4–CNS catalysts. The electrochemical test for the electrocatalytic oxidation of methanol (MOR) shown that the Pt/20%g–C3N4–CNS catalyst has the best catalytic performance and stability. These Pt/g–C3N4–CNS catalysts were analyzed by TEM, XRD, XPS, and BET characterization. It is discovered that the amount of g-C3N4 greatly influenced the structure and chemical properties of Pt/CNS precursor. As the content of g-C3N4 increases, the content of pyridine nitrogen and pyrrole nitrogen also increases, and N species can enhance the interaction between Pt nanoparticles and CNS, promote Pt dispersion, and increase the specific surface area of the catalyst. Similarly, an excessive addition of g-C3N4 will cause a sharp decline in the conductivity of the catalyst, and then led to the decline of MOR activity.  相似文献   

3.
MOFs (ZIF-67) and g-C3N4 catalyst-modified MoS2 nanoparticles are prepared by means of doping g-C3N4 in the process of ZIF-67 formation and then introducing MoS2 nanoparticles on the surface of collaborative structure between MOFs and g-C3N4. The MOFs (ZIF-67) and g-C3N4 catalyst-modified MoS2 photocatalyst exhibits efficient hydrogen production with about 321 μmol under visible light irradiation in 4 h, which is almost about 30 times higher than that of over the pure g-C3N4 photocatalyst. A series of characterization studies such as SEM, XRD, TEM, EDX, XPS, UV–vis DRS, FTIR, transient fluorescence and electro-chemistry show that the novel structure of g-C3N4 and MOF is formed, the more active sites appears and the efficiency of photo-generated charge separation is improved. MoS2, as a narrow band semiconductor, is grafted on the surface of g-C3N4/MOF, which could effectively harvest visible light and swift charge separation. The results are well mutual corroboration with each other. In addition, a eosin Y-sensitized reaction mechanism is introduced.  相似文献   

4.
Here, for the first time, a metal-free catalyst was synthesized by ethylenediamine tetra-acetic acid (EDTA) modification of the carbon nitride (g-C3N4) sample and protonation of the obtained sample. The catalyst was used for the production of H2 from the methanolysis of sodium borohydride (NaBH4). The EDTA modification and protonation of the g-C3N4 sample was confirmed by XRD, FTIR, SEM-EDX, and TEM analyses. During the hydrogen generation, NaBH4 concentration effect, catalyst amount effect, temperature effect and catalyst reusability were investigated. The HGR value obtained with 2.5% NaBH4 using 10 mg catalyst was 7571 mL min?1g?1. The activation energy (Ea) for the g–C3N4–EDTA-H catalyst was found to be 32.2 kJ mol?1 The reusability of the g–C3N4–EDTA-H catalyst shows a catalytic performance of 72% even after its fifth use.  相似文献   

5.
CdS and g-C3N4 are famous semiconductors in photocatalytic hydrogen evolution, however, their low efficiencies limit their further application. Here, a highly efficient ternary catalyst CdS/(Pt/g-C3N4) was reported and its photocatalytic hydrogen production activity reached up to 1465.9 μmol/h/g, which is 5.3 times of Pt/CdS and 4.0 times of Pt/g-C3N4, respectively. TEM and HRTEM images demonstrate the Pt nanoparticles exists on the interface of between CdS and g-C3N4 acting as a cocatalyst for hydrogen evolution. SPV spectra and electrochemical tests demonstrate that Pt as bridge between CdS and g-C3N4 also accelerates the electrons transforming which benefits for the inhibition of the recombination of photoexcited electrons and holes. This study demonstrated the dual roles of interface Pt and provides a new method to design a highly efficient photocatalyst.  相似文献   

6.
The effect of Rh co-catalyst nanoparticle size for photocatalytic water splitting using graphitic carbon nitride (g-C3N4) as light absorber was investigated. Rh nanoparticles with sizes in the 4–9 nm range were synthesized and deposited on g-C3N4. The light-absorption properties of the g-C3N4 and the particle size of Rh supported on g-C3N4 were also not influenced by the catalyst synthesis procedures. Rh/C3N4 is active in the photocatalytic splitting of water using visible light. The activity for H2 generation does not depend on Rh particle size. The results obtained point to two important design criteria for a successful photocatalyst: firstly, the surface of the semiconductor should support a sufficient number of Rh nanoparticles to remove the photogenerated electrons before their recombination with holes; secondly, the nanoparticles should be metallic in nature to catalyze the proton-electron transfer reaction to generate adsorbed H atoms. Surface oxidation of the Rh nanoparticles substantially lowers their photocatalytic activity.  相似文献   

7.
Photocatalytic technology for hydrogen evolution from water splitting and pollutant degradation is one of the most sustainable methods. Here, the graphene/g–C3N4–Co composite materials have been prepared by one-pot calcination method. The results show that g-C3N4 grow on the surface of graphene and form a sandwich structure, meanwhile, the introduction of Co increases the active sites, which promotes the photocatalytic performance. The influences of graphene and Co content on photocatalytic activity were also studied by UV–visible spectrophotometry (DRS), photoluminescence spectroscopy (PL), photocurrent, degradation MB, and hydrogen production. The apparent reaction rate constant k of graphene/g–C3N4–Co (3%) is 0.946 h−1, which is 4.90 and 2.18 times faster than g-C3N4 and graphene/g-C3N4, respectively. And the hydrogen production rate of graphene/g–C3N4–Co (3%) (892.3 μmol h−1 g−1) is 3.53 and 1.61 times higher than g-C3N4 and graphene/g-C3N4, respectively.  相似文献   

8.
Incorporating g-C3N4 with transition metal phosphides is emerging as a low-cost and robust co-catalyst for hydrogen evolution. The ammonia borane hydrolysis is an efficient method to release H2 at ambient conditions in the presence of a catalyst. An efficient and cheap catalyst is needed for practical application to achieve this benchmark. For this purpose, a catalyst Ni2P/C3N4 is synthesized by hydrothermal method and low-temperature phosphidation. The optimization reveals that the Ni2P/C3N4 with 6.5% Ni contents shows the best performance for H2 release. Furthermore, 2% Pt nanoparticles loading over Ni2P/C3N4 boosts the charge transfer and improves activity 5.7-fold compared to Ni2P/C3N4, and the Pt-loaded catalyst is depicted as Pt@Ni2P/C3N4. The reaction kinetics reveals that the hydrogen evolution rate accelerates by increasing the amount of Pt@Ni2P/C3N4 and AB concentration, and the loading of Pt nanoparticles loaded over Ni2P/C3N4 reduces the activation energy significantly. Moreover, the ionic interaction between Pt and Ni2P/C3N4 generates Ptᵟ+ and (Ni2P/C3N4)ᵟ active sites which facilitates B–H cleavage and O–H bonds of ammonia borane and water, respectively. Incorporating transition metals phosphide and noble metals supported over g-C3N4 paves the pathway toward the efficient H2 evolution from ammonia borane, bringing cost-effective modifications to synthesize constructive catalysts.  相似文献   

9.
Nanoparticles of palladium (Pd) were incorporated into graphitic carbon nitride (g-C3N4) matrix with a view to improving hydrogen sensing efficiency of g-C3N4, by a fairly new chemical process that uses ammonium tetrachloropalladate as a Pd metal nanoparticle source along with an appropriate reducing agent. Researchers have explored g-C3N4 for various applications such as a catalyst for water splitting, photoluminescence, storage because of its relatively low cost, easy synthesis, and ready availability. For the synthesis of g-C3N4, urea was used as a precursor at 550 °C and at atmospheric pressure under a muffle furnace without add-on support. The final solution of the Pd/g-C3N4 nanocomposite was then centrifuged and dried for use as a hydrogen-sensing material. g-C3N4 and Pd/g-C3N4 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-VIS-NIR spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). Pd-dispersed graphitic carbon nitride film was deposited on an inter digited carbon electrode by using a screen printing technique. From the qualitative analysis by I–V measurement, a significant change in the resistance was observed during the presence and absence of the hydrogen gas. The results show Pd/g-C3N4 nanocomposite as an efficient hydrogen sensing material.  相似文献   

10.
Photocatalytic hydrogen evolution from water is a feasible technique to solve energy crises and reduce dependance on carbon fuels. As for this, silver nanoparticles were grown on the surface of SnO2 coupled g-C3N4 nanocomposite for the generation of hydrogen gas from water under visible light photocatalysis. The prepared samples were properly characterized to investigate their light absorption characteristics followed by charge generation and separation for water splitting. The optimized nanocomposite produced 270 μmol h−1 g−1 hydrogen which was much superior to pure g-C3N4 and SnO2. These upgraded photocatalytic activities were attached to the extended visible-light absorption due to the presence of Ag nanoparticles characterized by surface plasmon resonance (SPR) and suitable conduction bands position of g-C3N4 and SnO2 for the separation of excited charges. The photoluminescence study, amount of produced hydroxyl free radicals and electrochemical investigation confirmed the long-rooted charge separation capability of the nanocomposites. We believe that this work will have more positive impacts on the synthesis of low cost SPR assisted photocatalysts for energy production and environmental purification.  相似文献   

11.
A ternary composite photocatalyst of nickel sulfide supported on the heterojunction of ultrathin cadmium sulfide-carbon based on g-C3N4 nanosheets was prepared by aqueous-phase in low-temperature innovatively, and its chemical compositions were confirmed by XRD, FT-IR and XPS. The morphology of two-dimensional nanosheet heterojunction was verified by SEM, TEM, HRTEM and BET, and the addition of nickel is beneficial to improve the specific surface area of the catalyst. The larger surface area was more beneficial to accelerate the carrier migration and reactant diffusion. Meanwhile, the electron structures were analyzed by UV–vis, work function, bader charge and ELF charge calculated by GGA-PBE, which proved that the electrons at heterojunction interface of CdS–C3N4 were transferred from g-C3N4 to CdS, and the strong interaction existed in two layers between CdS and g-C3N4 by reformed the bonds of Cd–N, and the doping Ni can regulate the interface electron transport mechanism of CdS–C3N4 heterojunction. The hydrogen evolution performance showed that the ternary composite photocatalyst was better than both of the single system of cadmium sulfide or carbon nitride and the binary system containing NiS–CdS or CdS–C3N4. Through the characterization and theoretical calculation of the results, we found that the synergistic effect of NiS–CdS–C3N4 system could solve the problems of high recombination rate of photo-electrons and holes, and insufficient active sites existing in single materials of g-C3N4 or CdS during the photocatalytic reaction.  相似文献   

12.
In photocatalytic field, it is a significant challenge to synthesize cocatalyst with high performance, noble-metal free and facile methods to recycle. Herein, carbon layer coated Fe3C (Fe3C@C) nanoparticles were prepared by one-step method and for the first time utilized as highly efficient cocatalysts for improving visible-light-driven hydrogen evolution activity of g-C3N4. The photocatalytic hydrogen evolution rate of optimal Fe3C@C/g-C3N4 was about 27.2 times of bare g-C3N4 samples. Furthermore, the Fe3C@C/g-C3N4 composite catalyst showed excellent stability and reusability. The apparent quantum yield (AQY) of the optimized FeC@C/g- C3N4 reaches 0.501% and 0.124% at 400 nm and 420 nm, respectively. The AQY of the FeC@C/g- C3N4 is 26.2 times higher than that of g-C3N4 at 400 nm Fe3C@C has an extraordinary cocatalytic effect for g-C3N4 photocatalytic hydrogen evolution mainly due to three aspects: Firstly, the Fe3C acts as a trap to lure electrons because of its lower Fermi energy level and higher conductivity, which can increase the hydrogen production activity by trapping the photogenerated electrons produced by g-C3N4; Secondly, the coated carbon layer can provide chemical protection for Fe3C nanoparticles and promote the transfer of photogenic electrons, thus further improving the efficiency and stability of photocatalytic hydrogen production; Thirdly, the strong magnetic property of Fe3C@C nanoparticles gives Fe3C@C/g-C3N4 photocatalysts the advantages of low cost and high recovery efficiency. It is believed that this work provides a new strategy and possibility for the application of photocatalytic hydrogen production.  相似文献   

13.
Photocatalytic hydrogen production is considered as an ideal approach to solve global energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4) has received extensive consideration due to its facile synthesis, stable physicochemical properties, and easy functionalization. However, the pristine g-C3N4 usually shows unsatisfactory photocatalytic activity due to the limited separation efficiency of photogenerated charge carriers. Generally, introducing semiconductors or co-catalysts to construct g–C3N4–based heterojunction photocatalysts is recognized as an effective method to solve this bottleneck. In this review, the advantages and characteristics of various types of g–C3N4–based heterojunction are analyzed. Subsequently, the recent progress of highly efficient g–C3N4–based heterojunction photocatalysts in the field of photocatalytic water splitting is emphatically introduced. Finally, a vision of future perspectives and challenges of g–C3N4–based heterojunction photocatalysts in hydrogen production are presented. Predictably, this timely review will provide valuable reference for the design of efficient heterojunctions towards photocatalytic water splitting and other photoredox reactions.  相似文献   

14.
Fabricating 0D/2D heterojunctions is considered to be an efficient mean to improve the photocatalytic activity of g-C3N4, whereas their applications are usually restricted by complex preparation process. Here, the 0D/2D SnO2/g-C3N4 heterojunction photocatalyst is prepared by a simple one-step polymerization strategy, in which SnO2 nanodots in-situ grow on the surface of g-C3N4 nanosheets. It shows the outstanding photocatalytic H2 production activity relative to g-C3N4 under the visible light, which is due to the formation of 0D/2D heterojunction significantly contributing to the separation of photogenerated charge carriers. In particular, the H2 production rate over the optimal SnO2/g–C3N4–1 sample is 1389.2 μmol h−1 g−1, which is 6.06 times higher than that of g-C3N4 (230.8 μmol h−1 g−1). Meanwhile, the AQE value of H2 production over the SnO2/g–C3N4–1 sample reaches up to a maximum of 4.5% at 420 nm. This work develops a simple approach to design and fabricate g–C3N4–based 0D/2D heterojunctions for the high-efficiency H2 production from water splitting.  相似文献   

15.
A nanocomposite CuTi layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) is facilely synthesized by hydrothermal method. There are electrostatic interactions between positive layers of CuTi-LDH and negatively charged inner g-C3N4 sheets. The nanocomposite and its precursors are characterized through various analytical techniques, which affirmed the presence of both g-C3N4 and CuTi-LDH characteristic features. The pore-enriched hybrid geometry of CuTi-LDH@g-C3N4 with high specific surface area (146 m2/g), and suitable band gap of 2.46 eV enables the nanocomposite to act as both an electrocatalyst and photoelectrocatalyst for oxygen evolution reaction (OER). Both the electrochemical and photoelectrochemical studies are done using 1 M KOH (pH = 13.6) with applied potential of ?0.2 V to 1.5 V vs. Ag/AgCl. The onset potential of CuTi-LDH@g-C3N4 for OER appears at η = 0.36 V in dark and η = 0.32 V under visible light illumination of 30 min. Also, Mott-Schottky analysis shows n-type semiconductor behaviour for CuTi-LDH@g-C3N4 and its precursors. The photoelectrochemical water oxidation proceeds by charge transfer across a Type II heterojunction formed between the CuTi-LDH and g-C3N4 materials.  相似文献   

16.
Photocatalytic hydrogen evolution is a promising method for converting solar energy into chemical energy. Herein, on the basis of graphitic carbon nitride (g-C3N4) material with alveolate structure prepared via the hard template method, transition-metal cobalt oxide nanoparticles were reasonably introduced, and a highly efficient cobalt oxide composite alveolate g-C3N4 (ACN) photocatalyst was successfully prepared. A series of test methods were used to characterize the structural properties of the prepared samples systematically, and the photocatalytic activity of the catalysts in photocatalytic hydrogen evolution was explored. The composite materials have excellent photocatalytic performance mainly because the synergistic effect of the alveolate structure of ACN provides multiple scattering effects; nitrogen vacancies serves as the centers of photogenerated carrier separation; and cobalt oxides accelerates electron transfer. This study provides a new idea for the design of g–C3N4–based photocatalysts with wide light responses and simple structures.  相似文献   

17.
Graphitic carbon nitride (g-C3N4) has been well-known as an appealing semiconducting material for photocatalytic hydrogen production despite its restricted active sites and poor electronic properties. In this work, exfoliated g-C3N4 nanosheets were synthesised by chemical treatment of the bulk graphitic carbon nitride (gCN) and the nanosheets were further doped with CdO. The photocatalysts produced were extensively characterized by diverse analysis including XRD, BET, XPS, TEM, FESEM, UV-Vis spectroscopy and PL analysis. The BET surface area of CdO/exfoliated g-C3N4, 40.1 m2 g−1 was doubled in comparison to the exfoliated g-C3N4. Numerous electrochemical analyses such as Mott-Schottky, linear weep voltammetry and chronoamperometry were also performed in a standard photoelectrochemical system with three-electrode cell. The hydrothermally synthesised CdO/exfoliated g-C3N4 resulted higher amount of hydrogen evolution (145 μmol/g) for the photoreforming of aqueous formaldehyde than the CdO (20 μmol/g), bulk gCN (58 μmol/g) and exfoliated g-C3N4 (87 μmol/g). The excellent hydrogen production rate using CdO/exfoliated g-C3N4 nanocomposite could be ascribed by higher number of active sites as well as shorter path of the charge carries to the reaction surface. The anticipated Z-Scheme mechanism has demonstrated a synergistic impact between the CdO and exfoliated g-C3N4 where the organic compounds acting as hole scavenger as well as contribute protons, H+ for the effective hydrogen production. Thus, it is clearly confirmed that the newly formulated CdO/exfoliated g-C3N4 has an outstanding potentiality for environmental remediation and conversion sectors.  相似文献   

18.
In this paper, a novel Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture has been successfully constructed by integrating Au/g-C3N4 plasmonic photocatalyst composite with 3D ZnIn2S4 nanosheet through a simple hydrothermal process. The Au nanoparticles were firstly anchored on the surface of pristine g-C3N4 material to get Au/g-C3N4 plasmonic photocatalyst. Ascribing to the surface plasmon resonance of Au nanoparticles, the obtained Au/g-C3N4 plasmonic photocatalyst shows a significant improved photocatalytic activity toward hydrogen production from water with visible light response comparing with pristine g-C3N4. Further combining Au/g-C3N4 plasmonic photocatalyst with 3D ZnIn2S4 nanosheet to construct a heterojunction composite. Owing to the synergistic effect of the surface plasmon resonance of Au nanoparticles in Au/g-C3N4 and the heterojunction structure in the interface of Au/g-C3N4 and ZnIn2S4, the prepared Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite shows an excellent photocatalytic activity toward hydrogen production from water with visible light response, which is around 7.0 and 6.3 times higher than that of the pristine C3N4 and Znln2S4 nanosheet, respectively. The present work might provide some insights for exploring other efficient heterojunction photocatalysts with excellent properties.  相似文献   

19.
In this study, a ternary photocatalyst named Ag–AgBr/g-C3N4/ZIF-8 (A/g/Z) was prepared by ionic liquid assisted in-situ growth method. The structure and composition of samples are studied by means of XRD, SEM, XPS, TEM, EIS, etc. The AgBr prepared by ionic liquid assisted method has good dispersion, and the protonated carbon nitride has better specific surface area and morphology structure. The structure of the composites is optimized by modifying g-C3N4 with MOFs and noble metals, and the existence of Ag+ can play a bridging role, so as to form multi-path electronic transmission route. The high efficiency of electron transfer greatly improved the efficiency of hydrogen evolution. It is worth noting that the surface plasmon resonance (SPR) effect produced by silver ions on the surface of g-C3N4 can improve the absorption of visible light. The A (1.1)/g/Z (6.5) exhibit high hydrogen evolution efficiency (2058 μmol g?1 h?1, which is 49 times than g-C3N4) at the absence of Pt co-catalyst. Furthermore, the transient photocurrent density of the composites is much higher than that of g-C3N4 and AgBr, the semicircle radius of EIS is also less than both. Through the five cycle experiment, the photocatalytic efficiency of the composite material remained above 91%.  相似文献   

20.
This study reported a photoelectric co-catalyst system of jet-flow reactor for efficient mineralization of Bisphenol A (BPA), where H2O2 was photoelectro-generated in situ from O2 reduction on gas diffusion electrodes fabricated by nitrogen-doped porous carbon and graphitic carbon nitride (NPC/g-C3N4). Current density, aeration rate, amount of MoS2 and FeSO4 catalyst in the jet-flow reactor photoelectrocatalysis system for BPA removal were investigated. The NPC/g-C3N4 cathodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), and the electrochemical workstation. The results show that at pH 7, the NPC/g–C3N4–(60%) has the highest rate of electrical generation hydrogen peroxide. When the pH rised, at pH values of 7, the cumulative of hydrogen peroxide increased, when the solution get slight alkaline, it was gradually decreased. Compared with the traditional electro-Fenton technology, the photoelectric method of co-catalysis has strong ·OH production rate and high oxidation ability. A possible mechanism for BPA degradation was oxidized by hydroxyl radical (·OH), resulting in the formation of shorter chain bisphenol A (BPA), which followed the same reaction cycle as BPA until it was mineralized. The removal rate of BPA can reach 100% within 20 min, the TOC removal rate up to 90%. This work provides new opinion into the development of a photoelectric collaborative system for H2O2 generation and the fast BPA degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号