首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Hydrogen clearance or safety distance can be defined as the minimum distance between a hydrogen leak source and surrounding equipment, property or personnel beyond which the risk to the said recipients associated with existing hydrogen hazards is deemed acceptable. The same principal is applied to determine clearances to ignition sources and air intakes only the criteria in this case are the risk of ignition or the risk of intaking a flammable mixture. The study of effects of small barriers as means to reduce clearance distances for compressed hydrogen releases is important for the development of installation codes and risk mitigation requirements. In this paper, computational fluid dynamics (CFD) modeling techniques were applied to the numerical simulation of the effects of a protective wall of 1 m by 1 m on reducing the size of hydrogen cloud. The protective wall was 1 m away from a 70 MPa (700 bar) 60 L tank, from which an incidental hydrogen release impinged horizontally onto the wall, causing a complicated 3D dispersion of hydrogen cloud. In-house CFD codes first accurately estimated the non-linear hydrogen mass release rate decreasing with time. Then the effects of the wall on the propagation speed of the hydrogen cloud moving behind the wall were investigated using the PHOENICS software package, provided with both the ideal gas law and the real gas law expressed by the Abel-Nobel equation of state (AN-EOS). The distributions of lower flammability limit (LFL) and 50% of LFL hydrogen clouds were described in detail based on the numerical results. It was found that the 50% of LFL hydrogen clouds (2% vol) could propagate behind the wall in less than 0.2 s after the onset of the release. The horizontal extents corresponding to 50% of LFL hydrogen cloud on the central vertical plane are 9.6 m at 5 s when they are predicted using the ideal gas law. When using the real gas law, the predicted extents decrease to 6.3 m at 5 s. The ideal gas law significantly overestimates the hypothetical hydrogen cloud volumes for LFL, or fractions of LFL, for different release times at the current initial stagnation pressure level (700 bar). The current model codes and standards generally specify clearance distances for hydrogen based on the regulators’ experience in other flammable gases, like natural gas or propane, rather than on real hydrogen gas properties that particularly deviate from ideal gas law under high pressure. On the other hand, it is relatively more conservative to exploit the ideal gas law to predict the combustible hydrogen cloud extents than using the real gas law for industrial applications. The numerical results from the impingement release also confirm that a small protective wall, or a barrier, can reduce the hydrogen concentration behind the wall. The numerical results can be further applied for defining the zoning requirements for Canadian Electrical Code and clearance distances for Canadian Hydrogen Installation Code.  相似文献   

2.
In Turkey, natural gas consumption started at 0.5 bcm (billion cubic meters) in 1987 and reached approximately 35 bcm in 2007. Turkish natural gas usage is projected to further increase remarkably in coming years. In 2001, a reform process was started to create and strengthen a competitive natural gas market. However, the reform has not worked out as expected so far. The present article discusses the application of auctions in Turkish natural gas distribution zones. After presenting a short summary of current literature, natural gas utilization and recent developments in Turkish natural gas market, we draw attention to our main focus, namely city natural gas tenders. Having described the tenders, we present problems associated with them. In the end, we touch upon some regulatory issues and provide some suggestions for improvement.  相似文献   

3.
The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries. The lowest costs of producing (including storing and transporting across 100 km) in the year 2004 are calculated for Poland, Hungary and Lithuania at 43–64 € per oven dry tonne (odt) or 2.4–3.6 € GJ?1 higher heating value. This cost level is roughly equivalent to the price of natural gas (3.1  GJ?1) and lower than the price of crude oil (4.6  GJ?1) in 2004, but higher than the price of coal (1.7  GJ?1) in 2004. The costs of biomass in Italy and the United Kingdom are somewhat higher (65–105  odt?1 or 3.6–5.8  GJ?1). The doubling of the price of crude oil and natural gas that is projected for the period 2004–2030, combined with nearly stable biomass production costs, makes the production of perennial grasses competitive with natural gas and fossil oil. The results also show that the substitution of fossil fuels by biomass from perennial grasses is a robust strategy to reduce fossil energy use and curb GHG emissions, provided that perennial grasses are grown on agricultural land (cropland or pastures). However, in such case deep percolation and runoff of water are reduced, which can lead to overexploitation of fresh water reservoirs. This can be avoided by selecting suitable locations (away from direct accessible fresh water reservoirs) and by limiting the size of the plantations. The impacts on biodiversity are generally favourable compared to conventional crops, but the location of the plantation compared to other vegetation types and the size and harvesting regime of the plantation are important variables.  相似文献   

4.
The successful deployment of a hydrogen delivery (transmission and distribution) infrastructure will be critical for the widespread use of hydrogen. Estimates based on three scenarios that vary in the degree of hydrogen penetration in the European energy system indicate that between 1 and 4 million km of distribution pipelines, and up to 35 000 km of high-pressure transmission and 400 000 km of medium pressure sub-transmission pipelines may be needed by 2050. A truck fleet for the supply of liquefied hydrogen may reach the size of 3000–8000 vehicles. The cumulative capital necessary to build this infrastructure by 2050 may range between 700 and 2200 thousand million euros for the most optimistic scenario and is significantly lower for the other scenarios. Most of this will be needed for the development of the distribution network. These costs however represent a relatively small fraction (7.5–22%) of the annual gross value added of the energy sector.  相似文献   

5.
A nationally consistent wave resource assessment is presented for Australian shelf (<300 m) waters. Wave energy and power were derived from significant wave height and period, and wave direction hindcast using the AusWAM model for the period 1 March 1997 to 29 February 2008 inclusive. The spatial distribution of wave energy and power is available on a 0.1° grid covering 110–156° longitude and 7–46° latitude. Total instantaneous wave energy on the entire Australian shelf is on average 3.47 PJ. Wave power is greatest on the 3000 km-long southern Australian shelf (Tasmania/Victoria, southern Western Australia and South Australia), where it widely attains a time-average value of 25–35 kW m?1 (90th percentile of 60–78 kW m?1), delivering 800–1100 GJ m?1 of energy in an average year. New South Wales and southern Queensland shelves, with moderate levels of wave power (time-average: 10–20 kW m?1; 90th percentile: 20–30 kW m?1), are also potential sites for electricity generation due to them having a similar reliability in resource delivery to the southern margin. Time-average wave power for most of the northern Australian shelf is <10 kW m?1. Seasonal variations in wave power are consistent with regional weather patterns, which are characterised by winter SE trade winds/summer monsoon in the north and winter temperate storms/summer sea breezes in the south. The nationally consistent wave resource assessment for Australian shelf waters can be used to inform policy development and site-selection decisions by industry.  相似文献   

6.
The poplar bioenergy system has been analysed applying life cycle assessment (LCA) to compare its environmental performance to: Ethiopian mustard bioenergy system and natural gas. The life cycle impact assessment (LCIA) shows that the use of fertilizers is the highest impact in four of the 10 environmental categories, representing between 39% and 67% of the impact in them. The diesel used in transport vehicles and agricultural tractors also has a significant impact in another five of the 10 analysed categories 40–85%. The poplar bioenergy system contributes to global warming with 1.90–1.98 g CO2 eq MJ?1 biomass produced. The production and transport as far as the thermoelectric plant of the poplar biomass consumes 0.02 MJ of primary energy per 1 MJ of biomass stored. In comparison with Ethiopian mustard and natural gas, it reduces primary energy consumption by 83% and 89% and the greenhouse gas emission by 84% and 89%, respectively. The results of the analysis support that the poplar bioenergy system is viable from an energy balance and environmental perspective for producing energy in southern Europe, as long as it is cultivated in areas where water is available. This latter point and the better environmental performance of both crops in comparison to natural gas allows us to affirm that the combination of several crops adapted to the local agro-climatic conditions of the territory will be the most suitable strategy in Mediterranean areas that wish to reach the global energy production targets in terms of biomass established by the European Union (EU).  相似文献   

7.
For meeting the increasing demand of energy, biohydrogen production is to be considered in higher yield. Biohydrogen can be produced both by dark and photofermentative process. In this study, the photofermentative pathway is followed by using dl malic acid (IUPAC name: 2-hydroxybutanedioic acid, molecular weight: 134.08744 g mol?1, molecular formula: C4H6O5) as carbon source. Pure strain of purple non-sulfur (PNS) bacteria: Rhodobacter sphaeroides strain O.U.001 was studied to produce biohydrogen using the photobioreactor. The photobioreactor was constructed aiming the uniform light distribution. The objective of this study was to investigate the performance of 1 L annular photobioreactor operating in indoor conditions. The highest rate of hydrogen production was obtained at 92 h. In the designed photobioreactor, using Rhodobacter sphaeroides strain O.U.001 (initial dl malic acid concentration of 2.01 g L?1) at an initial pH of 6.8 ± 0.2, temperature 32 ± 2 °C, inoculum volume 10% (v/v), inoculum age of 48 h, 250 rpm (rotation per minute) stirring and light intensity of 15 ± 1.1 W m?2, the average H2 production rate was about 6.5 ± 0.1 mL H2 h?1 L?1 media and yield 4.5 ± 0.05 mol of H2 mol?1 of dl malic acid. Luedeking–Piret model was applied for the data fitting to determine the relationship between the cell growth and photofermentative hydrogen production. The photofermentative hydrogen production by this PNS bacterium was found to be microbial mixed growth associated function.  相似文献   

8.
The storage of hydrogen on board vehicles is one of the most critical issues for the transition towards an hydrogen-based transportation system. An electric vehicle powered by a typical gasoline tank will require 3.1 kg of hydrogen (H2) to achieve a range of 500 km. Compared to a typical gasoline tank, this would correspond to a hydrogen density of 65 kg/m3 (including the storage system) and 6.5 wt%. Presently, only liquid hydrogen (LH2) systems with a density of 51 kg/m3 and 14 wt% is close to this target. However, LH2 is costly and requires more complex refueling systems. The physical adsorption of hydrogen on activated carbon can reduce the pressure required to store compressed gases. Though an efficient adsorption-based storage system for vehicular use of natural gas can be achieved at room temperature, the application of this technology to hydrogen using activated carbon as the adsorbent requires its operation at cryogenic temperature. We present the results of a parametric and comparative study of adsorption and compressed gas storage of hydrogen as a function of temperature, pressure and adsorbent properties. In particular, the isothermal hydrogen storage and net storage densities for passive and active storage systems operating at 77, 150 and 293 K are compared and discussed.  相似文献   

9.
Bio-hydrogen production by combined dark and light fermentation of ground wheat starch was investigated using fed-batch operation. Serum bottles containing heat-treated anaerobic sludge and a mixture of Rhodobacter sp. was fed with a medium containing 20 g dm?3 wheat powder (WP) at a constant flow rate. The system was operated at different initial dark/light biomass ratios (D/L). The optimum D/L ratio was 1/2 yielding the highest cumulative hydrogen (1548 cm3), yield (65.2 cm3 g?1 starch), and specific hydrogen production rate (5.18 cm3 g?1 h?1). Light fermentation alone yielded higher hydrogen production than dark fermentation due to fermentation of volatile fatty acids (VFAs) to H2 and CO2. The lowest hydrogen formation was obtained with D/L ratio of 1/1 due to accumulation of VFAs in the medium.  相似文献   

10.
A penalty finite element method based simulation is performed to analyze the influence of various walls thermal boundary conditions on mixed convection lid driven flows in a square cavity filled with porous medium. The relevant parameters in the present study are Darcy number (Da = 10?5 ? 10?3), Grashof number (Gr = 103 ? 105), Prandtl number (Pr = 0.7–7.2), and Reynolds number (Re = 1–102). Heatline approach of visualizing heat flow is implemented to gain a complete understanding of complex heat flow patterns. Patterns of heatlines and streamlines are qualitatively similar near the core for convection dominant flow for Da = 10?3. Symmetric distribution in heatlines, similar to streamlines is observed irrespective of Da at higher Gr in natural convection dominant regime corresponding to smaller values of Re. A single circulation cell in heatlines, similar to streamlines is observed at Da = 10?3 for forced convection dominance and heatlines are found to emanate from a large portion on the bottom wall illustrating enhanced heat flow for Re = 100. Multiple circulation cells in heatlines are observed at higher Da and Gr for Pr = 0.7 and 7.2. The heat transfer rates along the walls are illustrated by the local Nusselt number distribution based on gradients of heatfunctions. Wavy distribution in heat transfer rates is observed with Da ? 10?4 for non-uniformly heated walls primarily in natural convection dominant regime. In general, exponential variation of average Nusselt numbers with Grashof number is found except the cases where the side walls are linearly heated. Overall, heatlines are found to be a powerful tool to analyze heat transport within the cavity and also a suitable guideline on explaining the Nusselt number variations.  相似文献   

11.
This paper provides an insight to the feasibility of adopting hydrogen as a key energy carrier and fuel source in the near future. It is shown that hydrogen has several advantages, as well as few drawbacks in using for the above purposes. The research shows that hydrogen will be a key player in storing energy that is wasted at generation stage in large-scale power grids by off-peak diversion to dummy loads. The estimations show that by the year of 2050 there will be a hydrogen demand of over 42 million metric tons or 45 billion gallon gasoline equivalent (GGE) in the United States of America alone which can fuel up 342 million light-duty vehicles for 51 × 1011 miles (82 × 1011 km) travel per year. The production at distributed level has also been discussed. The paper also presents the levels of risk in production, storage and distribution stages and proposes possible techniques to address safety issues. It is shown that the storage in small to medium scale containers is much economical compared to doing the same at large-scale containers. The study concludes that hydrogen has a promising future to be a highly feasible energy carrier and energy source itself at consumer level.  相似文献   

12.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

13.
The sooting structure of premixed fuel-rich atmospheric pressure benzene flames burning at the same C/O molar ratio = 0.8 was studied in different temperature conditions (Tmax = 1720 K and 1810 K) by changing the cold gas velocity. Compositional profiles of gaseous and condensed phases, measured by probe sampling and chemical analysis, indicated that pyrolytic routes leading to higher soot formation are more favoured in the lower temperature conditions.The structural analysis of condensed phases, including condensed species and soot, has been carried out by using FT-IR and UV–Visible spectroscopy sensitive to the hydrogen bonding and carbon network, respectively.The very low hydrogenated character, as evaluated by FT-IR and elemental analysis, and the high aromatic/graphitic nature of the benzene soot, as shown by a detailed examination of UV–Visible spectral parameters, confirmed the effect of benzene fuel on the internal structure of soot particles already in the early stages of particle inception.  相似文献   

14.
This paper presents a novel polygeneration system that integrates the acetylene process and the use of fuel cells. The system produces acetylene and power by a process of the partial oxidation/combustion (POC) of natural gas process, a water–gas shift reactor, a fuel cell and a waste heat boiler auxiliary system to recover the exhaust heat and gas from the fuel cell. Based on 584.3 kg/h of natural gas feedstock, a POC reactor temperature of 1773 K, an absorber pressure of 1.013 MPa and a degasser pressure of 0.103 MPa, the simulation results show that the new system achieved acetylene production of 1.9 MW, net electricity production of 1.7 MW, power generation efficiency of 26.8% and exergy efficiency of 43.4%, which was 20.2% higher than the traditional acetylene production process. The new system's exergy analysis and the flow rate of the products were investigated, and the results revealed that the energy conversion and systematic integration mechanism demonstrated the improvement of natural gas energy conversion efficiency.  相似文献   

15.
This study was designed to consider all nitrogen fertilizer-related effects on crop production and emission of greenhouse gases on loamy sandy soils in Germany over a period of nine years (1999–2007). In order to set up a CO2 balance for the production of energy crops, different nitrogen pathways were investigated, such as direct N2O emissions from the soil and indirect emissions related to NO3 leaching and fertilizer production. Fluxes of N2O were measured in an experimental field using closed chambers. Poplar (Populus maximowiczii × P. nigra) and rye (Secale cereale L.) as one perennial and one annual crop were fertilized at rates of 0 kg N ha?1 yr?1, 75 kg N ha?1 yr?1 and 150 kg N ha?1 yr?1. The mean N2O emissions from the soil ranged between 0.5 kg N ha?1 yr?1 and 2.5 kg N ha?1 yr?1 depending on fertilization rate, crop variety and year. The CO2 fixed in the biomass of energy crops is reduced by up to 16% if direct N2O emissions from soil and indirect N2O emissions from NO3 leaching and fertilizer production are included. Taking into account the main greenhouse gas emissions, which derive from the production and the use of N fertilizer, the growth of poplar and rye may replace the global warming potential of fossil fuels by up to 17.7 t CO2 ha?1 yr?1 and 12.1 t CO2 ha?1 yr?1, respectively.  相似文献   

16.
This study experimentally examines the influence of two-phase flow on the fluid flow in membraneless microfluidic fuel cells. The gas production rate from such fuel cell is firstly estimated via corresponding electrochemical equations and stoichiometry from the published measured current–voltage curves in the literature to identify the existence of gas bubble. It is observed that O2 bubble is likely to be generated in Hasegawa’s experiment when the current density exceeds 30 mA cm?2 and 3 mA cm?2 for volumetric flow rates of 100 μL min?1 and 10 μL min?1, respectively. Besides, CO2 bubble is also likely to be presented in the Jayashree’s experiment at a current density above 110 mA cm?2 at their operating volumetric liquid flow rate, 0.3 mL min?1. Secondly, a 1000-μm-width and 50-μm-depth platinum-deposited microfluidic reactor is fabricated and tested to estimate the gas bubble effect on the mixing in the similar microchannel at different volumetric flow rates. Analysis of the mixing along with the flow visualization confirm that the membraneless fuel cell should be free from any bubble, since the mixing index of the two inlet streams with bubble generation is almost five times higher than that without any bubble at the downstream.  相似文献   

17.
Methane production occurs during hydrogen gas generation in microbial electrolysis cells (MECs), particularly when single chamber systems are used which do not keep gases, generated at the cathode, separate from the anode. Few studies have examined the factors contributing to methane gas generation or the main pathway in MECs. It is shown here that methane generation is primarily associated with current generation and hydrogenotrophic methanogenesis and not substrate (acetate). Little methane gas was generated in the initial reaction time (<12 h) in a fed batch MEC when acetate concentrations were high. Most methane was produced at the end of a batch cycle when hydrogen and carbon dioxide gases were present at the greatest concentrations. Increasing the cycle time from 24 to 72 h resulted in complete consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied voltages reduced methane production. Little methane (<4%) accumulated in the gas phase at an applied voltage of 0.6–0.9 V over a typical 24 h cycle. However, when the applied voltage was decreased to 0.4 V, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times. The lack of significant hydrogen production from acetate was also supported by Coulombic efficiencies that were all around 90%, indicating electron flow was not altered by changes in methane production. These results demonstrate that methane production in single chamber MECs is primarily associated with current generation and hydrogen gas production, and not acetoclastic methanogenesis. Methane generation will therefore be difficult to control in mixed culture MECs that produce high concentrations of hydrogen gas. By keeping cycle times short, and using higher applied voltages (≥0.6 V), it is possible to reduce methane gas concentrations (<4%) but not eliminate methanogenesis in MECs.  相似文献   

18.
Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ? Re ? 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.  相似文献   

19.
《Applied Thermal Engineering》2007,27(2-3):408-412
For economic and environmental reasons natural gas begins to take an important participation as an energy source in the residential sector of Latin American cities placed at high altitudes: La Paz (3719 m), Santa Fe de Bogotá (2600 m), Mexico City (2240 m), Manizales (2150 m), Medellín (1550 m), Cali (1000 m) and others.One of the most widely used natural gas systems in the residential sector is the partially aerated burner. The height of the blue cone in a premixed flame increases as the altitude above sea level becomes greater. In this work this behavior is determined experimentally, for this purpose tests were carried out in colombian location placed at 40, 550, 1220, 2040 and 2550 m above sea level.In every place of tests three replicas were performed, keeping constant the following variables: chemical composition of natural gas, with a methane content of 98%, gas pressure discharge at the injector at 20 mbar, injector diameter in 1.35 mm, mixer geometry and port diameter in 17 mm. The images of the blue cone were captured with a Pixera digital camera for images registration. Images were stored to determine later, through the software Matrox Inspector for images analysis, the height of the blue cone in each experiment for the different altitudes.It was found that the height of the blue cone is increased in 1.49 ± 0.12 mm by each 304 m (1000 feet) rise in altitude.  相似文献   

20.
The three-dimensional CO2 dissolution process through a gas–liquid interface in microfluidic devices was investigated experimentally, for the precise control of CO2 dissolution. The gas dissolution was evaluated by using confocal micron-resolution particle image velocimetry (micro-PIV) combined with laser induced fluorescence (LIF), which has the ability to measure the velocity and dissolved CO2 concentration distribution in a liquid flow field. The measurement system is based on the confocal microscope, which has excellent depth resolution and enables visualization of the three-dimensional distributions of velocity and dissolved CO2 concentration by rendering two-dimensional data. The device is comprised of a polydimethylsiloxane chip, whose microchannels were fabricated by using a cryogenic micromachining system. The width and depth of the liquid flow channel are larger than those of the gas flow channel. This is due to the need for decreasing the width of the gas–liquid interface and increasing the hydraulic diameter of the liquid channel, whose conditions generate a static gas–liquid interface. The experiments were performed for three different liquid flow conditions corresponding to Reynolds numbers of 1.0 × 10?2, 1.2 × 10?2 and 1.7 × 10?2, and the gas flow rate was set to be constant at 150 μL/min. The LIF measurements indicate that an increase in the Reynolds number yields a decrease in dissolved gas in the spanwise directions. Furthermore, molar fluxes by convection and diffusion were evaluated from the experimental data. The molar fluxes in the streamwise direction were at least 20 times as large as those in the spanwise and depthwise directions. This reveals that an increase in momentum transport in the spanwise and depthwise directions is an important factor for enhancing mass transfer in the gas–liquid microchannel flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号