首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The construction of cost-effective bifunctional electrocatalysts with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant for efficient overall water splitting. Herein, this work demonstrates a novel strategy for the synthesis of nickel-cobalt oxides/sulfides/phosphides composite (denoted as NiCoO–2P/S) nanoarrays on Ni foam. In this method, Ni–Co bimetallic oxide nanowires on Ni foam were partially phosphorized and sulfurized simultaneously in situ to yield Ni–Co oxide/sulfide/phosphide composite. The NiCoO–2P/S arrays have good interfacial effects and display many holes in the nanowires, giving it the advantage of large accessible surfaces on the nanowires and a beneficial for the release of gas bubbles, resulting in an excellent OER performance with a low overpotential (η) of 254 mV at 100 mA cm?2 and good HER activity (η10 = 143 mV at 10 mA cm?2). The electrocatalytic test results demonstrate small Tafel slopes (82 mV dec?1 for HER, 88 mV dec?1 for OER) and the satisfying durability in an alkaline electrolyte, indicating that the HER and OER activity was enhanced by the introduction of the Ni/Co sulfides and phosphides into Ni–Co oxides composite nanowires. Furthermore, the as-prepared NiCoO–2P/S catalyst can be used as both the anode and the cathode simultaneously to realize overall water splitting in the two-electrode electrolyzer. This system can be driven at low cell voltages of 1.50 and 1.68 V to achieve current densities of 10 and 100 mA cm?2, respectively. This work provides an alternative strategy to prepare high-performance bifunctional electrochemical materials and demonstrates the advantages of Ni–Co oxide/sulfide/phosphide composites for water splitting.  相似文献   

2.
Ternary Ni–P–La alloy was synthesized by the co-electrodeposition method on the copper substrate. The energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used for characterization of the synthesized alloy. The electrochemical performance of the novel alloy was investigated based on electrochemical data obtained from steady-state polarization, Tafel curves, linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) in alkaline solution and at ambient temperature. The results showed that the microstructural properties play a vital purpose in determining the electrocatalytic activity of the novel alloys. Also, the HER on investigated alloys was performed via the Volmer-Heyrovsky mechanism and Volmer step as RDS in this work. Ni–P–La catalyst was specified by ƞ250 = −139.0 mV, b = −93.0 mV dec−1, and jo = −181.0 μA cm−2. The results revealed that the Ni–P–La catalysts have a high potential for HER electrocatalysts in 1M NaOH solution.  相似文献   

3.
In order to find out electrocatalysts based on non-precious metals, Ni–Co/GO-TiO2 composite with different amounts of nickel and cobalt is prepared and the impacts of TiO2 nanoparticles on GO support are highlighted. Composition, morphology and textural features of the synthesized materials are characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, N2 adsorption-desorption isotherms and field emission scanning electron microscopy equipped with energy-dispersive X-ray analysis. The electrochemical activity of the prepared catalysts toward methanol and ethanol electrooxidation in alkaline media is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. Results confirmed that adding TiO2 nanoparticles to graphene oxide can increase the surface area, porosity and electrochemically active surface area of the support material. The composition with the equal amount of nickel and cobalt precursors exhibited the highest current density for methanol and ethanol electrooxiation equal to 121.07 and 145.28 mA/cm2, respectively. Stability test results demonstrated that this sample maintains 94.1% and 87.5% of initial current density after 7200 s for the electrooxidation of ethanol and methanol in 1.0 M KOH, respectively. All results confirm the synergic effect of Ni and Co for the alcohols oxidation in alkaline media and equal amount of Ni and Co leads to the best catalytic performance with the highest current density, lowest impedance and maximum stability.  相似文献   

4.
Water splitting is a promising reaction for storing sustainable but intermittent energies. The critical bottleneck for it is oxygen evolution reaction (OER) requiring insufficiently low overpotentials, η. Metal oxides are the group of high performance catalysts for water oxidation, so far. We report a facile synthesis of the mixed metal oxide composite (NiO/Mn-doped NiCo2O4) and an easy dip-coating method to create electrocatalysts on nickel foam as electrode substrates cause significant efficiency for OER. The mixed metal oxides catalyst was characterized by using electrochemical methods, high-resolution transmission electron microscopy (HR-TEM), field emission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma (ICP) and fourier-transform infrared spectroscopy (FTIR). Electrocatalysts were shown a Tafel slope of 34 mV dec?1 with overpotential η = 482 mV (for 100 mA cm?2) and at least 20 h durable OER activity. The electrochemical data demonstrate the synergistic effect of the coupling between the three metal-centres of Ni, Co, and Mn to decline the overpotential value. The current of (OER) is related to the electrolyte pH, displaying a non-proton-concerted mechanism in an approach to identifying rate-determining steps for OER. This could be concluded by the direct neighbour lattice O?– coupling to form an O–O bond. The simple and rapid fabrication method and the promising stability and high performance of the herein developed electrodes render them quite promising for technological water splitting systems.  相似文献   

5.
Design of cost-effective and high-efficient electrocatalysts for hydrogen evolution reaction (HER) is of vital significance for the current renewable energy devices — fuel cells. Herein, we report a facile strategy to prepare partial phosphorization of Co–Ni–B material with porous structure via a water-bath boronizing and subsequent phosphorization process at moderate temperature. The optimal atomic proportion of Co to Ni is investigated via physical and electrochemical characterization. As a result, Co9–Ni1–B–P exhibits the best HER activity, which require an lower overpotential of ~192 mV to deliver a current density value of 10 mA cm−2 and a smaller Tafel slope of 94 mV dec−1 in alkaline media, relative to P-free Co–Ni–B catalysts, Co9–Ni1–B–P with other Co: Ni proportion and mono metallic borides The excellent electrocatalytic performance of Co9–Ni1–B–P is mainly ascribed to the three-dimensional (3D) porous structure and the coordinate functionalization between the borides and phosphides. This work provides a promising strategy for the exploration of quaternary composites as efficient and cost-effective electrocatalysts for HER.  相似文献   

6.
Four different amount of Cu doped Ni–Co alloy coatings were fabricated on SUS430 substrate by electroplating for solid oxide fuel cells (SOFCs) interconnects application. After oxidation at 800 °C, the microstructure and oxide phase of samples were tested by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Our experimental results indicated that the Cu addition improved the electrical behavior of Ni–Co alloy coating. Cu doping reduced the activation energy (Ea) of electrons hopping and inhibited the growth of Cr2O3 oxide layer. Furthermore, the oxidation kinetics and electrical properties of the alloy coatings were obtained. These results showed that the 9% Cu doped Ni–Co coated steels achieved the minimum parabolic rate constant (2.05 × 10−14 g2cm−4s−1) and area specific resistance (14.11 mΩ cm2) after the thermostatic oxidation process.  相似文献   

7.
The development of electrode materials with simple preparation, favorable price, excellent electrocatalytic activity, and stability are some of the most important issues in the field of electrochemistry. Herein, we prepared Ni–Co/Ni–Co–O–P cotton flower like on a copper sheet (CS) by a convenient, efficient, and scalable electrodeposition method. The Ni–Co/Ni–Co–O–P was employed as effective binder free electrode material in two different applications such as electrocatalytic water splitting and acetaminophen (APAP) sensor. Remarkably, the Ni–Co/Ni–Co–O–P@CS exhibits low overpotentials of 310 and 90 mV at 10 mA cm?2 for oxygen and hydrogen evolution reactions in alkaline media, respectively. Besides, the Ni–Co/Ni–Co–O–P@CS || Ni–Co/Ni–Co–O–P@CS couple needs a low cell voltage of 1.62 V to achieve a current density of 10 mA cm?2, and its potential change is negligible after 20 h of continuous operation. Furthermore, Ni–Co/Ni–Co–O–P displays good electrochemical sensing performance toward APAP with a high sensitivity of 803.74 μA mM?1cm?2, low limit of detection of 0.16 μM, a wide linear range of 0.05 mM–3 mM, and a fast response time of 3.3 s. This work proposes a simple approach for synthesis of Ni–Co/Ni–Co–O–P as an efficient electrode material for water splitting and APAP sensing.  相似文献   

8.
High-efficiency and economical electrocatalysts for electrochemical water splitting are the core component of the renewable energy conversion. Herein, a simple and economical strategy is described to synthesize a series of metal oxide decorated nitrogen-doped carbon nanotubes materials (N-CNT@Cu–Fe Oxide Alloy NPs) by utilizing carbon nanotubes as the substrate carrier material. Additionally, the polypyrrole (PPy) was served as both the nitrogen resource and the localizing agent to load the Cu–Fe oxide alloy. Moreover, the theoretical and test results indicated that the superior HER and ORR performance is mainly related to the synergistic effect between the nitrogen-doped CNT and metallic oxide alloy. In the series of catalysts we prepared, N-CNT@Cu1–Fe1 Oxide Alloy NPs exhibits more significant catalytic activity and better durability than other catalysts that we synthesized. Meanwhile, the catalyst shows the low Tafel slope of 68.28 mV dec?1 for HER and reaches 10 mA cm?2 at the overpotential of 375 mV. The K–L plot shows that the electron transfer number of N–CNF@Cu1–Fe1 Alloy NPs is 3.43.  相似文献   

9.
Developing high-efficiency and earth-abundant electrocatalysts for electrochemical water splitting is of paramount importance for energy conversion. Although tremendous effort has been paid to transition metal (TM) material-based electrocatalysts, rational design and controllable synthesis of fine structures to fully utilize the latent potential of TM materials remain great challenges. We herein report a composition-tuning strategy to achieve rational structure control of quaternary Co–Ni–S–Se materials through a facile one-pot hydrothermal method, in which earth-abundant Ni is introduced into a CoSxSe2-x matrix to optimize the morphology and electronic structure of the quaternary electrocatalyst. Because of the introduction of Ni, this novel Co–Ni–S–Se quaternary system shows better catalytic activity for water splitting with Tafel slopes of 42.1 mV dec−1 for hydrogen evolution reaction (HER) and 65.5 mV dec−1 for oxygen evolution reaction (OER), respectively, compared with its precursor Co–S–Se ternary system. For stability, there is negligible fading after long-term electrochemical test. Our work not only provides a novel thinking to introduce nickel into Co–S–Se ternary system by a facile hydrothermal synthesis for electrochemical water splitting, but also this quaternary system realizes bifunctional catalysis and better electrochemical performance relative to the ternary counterpart.  相似文献   

10.
5 nm palladium nanoparticles (Pd NPs) are synthesized and assembled on reduced graphene oxide-iron oxide nanocomposite (rGO-Fe3O4) to be used in oxygen reduction reaction (ORR) and borohydride oxidation reaction (BOR) studies in alkaline media. The structure and morphology of the resulting Pd/rGO-Fe3O4 hybrid material are evaluated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) analyses. The electrochemical behavior of Pd/rGO-Fe3O4 hybrid material for the ORR and BOR is investigated by voltammetry with rotating disk and rotating ring disk electrode and electrochemical impedance spectroscopy, enabling evaluation of the number of exchanged electrons, Tafel slope, exchange current density and activation energy. The results reveal that ORR at Pd/rGO-Fe3O4 proceeds as a 2-electron process with Tafel slope of 0.133 V dec?1, while BOR proceeds as a 5.6-electron process with Tafel slope of 0.350 V dec?1 and exchange current density of 1.38 mA cm?2. The BOR activation energy was found to be 12.4 kJ mol?1. Overall, this study demonstrates the good efficiency of Pd/rGO-Fe3O4 hybrid material for BOR.  相似文献   

11.
Transition metal phosphides (TMPs) have attracted considerable attention as an advanced electrocatalyst for hydrogen evolution reaction (HER). Nevertheless, the catalytic efficiency of single-component TMPs is still restricted that cannot endure long-term running and easy to be corroded especially under harsh conditions. In this work, a multicomponent electrocatalyst combined with CoP/Ni2P heteronanoparticles and Co/Ni single-atom active sites (denoted as N–C@CoP/Ni2P) is rational designed and prepared. The obtained N–C@CoP/Ni2P electrode material exhibits enhanced performance with the overpotential of 153 mV at 10 mA cm?2, and the small Tafel value of 53.01 mV dec?1 in 0.5 M H2SO4, and a satisfied result is obtained in basic media as well. The outstanding HER performance is mainly benefiting from the synergistic effect between CoP and Ni2P, and the highly catalytic faction of atomic Co/Ni dual sites. Furthermore, a powerful conductive network fabricated by N-doped carbon skeleton and in-situ grown CNTs improves the conductivity of catalyst. Such a stereoscopic 3D nanostructure is also facile to accelerate the shuttle of electrons and ions.  相似文献   

12.
In the present work, a porous carbonaceous platform containing zirconium oxide was used for spreading Ni nanoparticles, and applied to methanol oxidation. The platform was obtained by calcination of a metal-organic framework (MOF) attached to graphene oxide. Nickel nanoparticles were then deposited on the nanocomposite by chemical reduction from a Ni2+ solution. The obtained electrocatalyst was characterized by different methods. An excellent electrocatalytic behavior was observed towards methanol oxidation in alkaline medium (j ~ 240 mA cm?2 or ~ 626 mA mg?1 in 1.0 M methanol). The results of methanol oxidation by various electrochemical studies (cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry and chronopotentiometry) revealed the effective synergy between reduced graphene oxide, porous carbon material, ZrO2 metal oxide and Ni nanoparticles. Good durability and stability of the proposed electrocatalyst and significantly increased current density of methanol oxidation suggest it as a potential alternative for Pt-based electrocatalysts in direct methanol fuel cells.  相似文献   

13.
The mixed metal dichalcogenides combination of WS2–MoS2 was coated onto Cu substrate by electroless NiMoP plating technique and the electrocatalytic hydrogen evolution reaction (HER) performance was investigated. The enhanced structural, morphological parameters and boosted electrocatalytic performance of the various metal-metal molar ratio of WS2–MoS2 onto NiMoP plate were identified under variable operating conditions and it was successfully evaluated by various characterization techniques. The well-defined crystalline nature, phase, particle size, structure, elemental analysis and surface morphology of prepared coatings were analyzed by FESEM, XRD, AFM and EDS mapping. The electrochemical analysis was performed using open circuit potential (OCP) analysis, chronoamperometry (CA), electrochemical impedance spectroscopy (EIS), Tafel curves, linear sweep voltammetry (LSV), cyclic voltammetry (CV) and polarization studies to find the activity of prepared electrocatalyst towards electrochemical hydrogen evolution reactions. The performance of bare NiMoP and WS2–MoS2/NiMoP plates were compared and found that the HER activity of NiMoP can be reinforced by composite incorporation through the synergic effect arises with in the catalytic system, which improves surface roughness and enhances the magnitude of electrocatalyst toward HER. The achievement of enhanced catalytic performance of coatings was authenticate by the kinetic parameters such as decreases in Tafel slope (98 mV dec?1), enhanced exchange current densities (9.32 × 10?4 A cm?2), and a lower overpotential. The consistent performance and durability of the catalyst were also investigated. The enhanced electrocatalytic activity of WS2–MoS2/NiMoP coatings increased with respect to the surface-active sites associated with combination of mixed dichalcogenides and the synergic effect arises in between different components present in the coating system. This work envisages the progressive strategies for the economical exploration of a novel WS2–MoS2/NiMoP water splitting catalyst used for large scale H2 generation. The prepared WS2–MoS2/NiMoP embedded Cu substrate possess high catalytic activity due to its least overpotential of 101 mV at a benchmark current density of 10 mA cm?2, which demonstrated the sustainable, efficient and promising electrocatalytic property of prepared catalyst towards HER under alkaline conditions.  相似文献   

14.
Reversible oxygen electrodes with high efficiencies for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of great significance for a variety of energy conversion devices, such as fuel cells and metal-air batteries. Herein, Co2P nanoparticles supported on cobalt-embedded N-doped carbon materials (Co2P/Co–N–C) have been prepared by pyrolysis of cobalt zeolitic imidazolate framework and phosphating post treatment. The optimal Co2P/Co–N–C composite shows excellent bifunctional electrocatalytic activities for both OER (the potential of 1.65 V at 10 mA cm?2) and ORR (half-wave potential of 0.82 V). As a practical demonstration, Co2P/Co–N–C catalyst is used as an air electrode in liquid Zn-air battery, which displays a large open-circuit voltage of 1.50 V, a high peak-power density of 158 mW cm?2 and excellent reversibility of over 205 h at 5 mA cm?2. Moreover, the flexible Zn-air battery with Co2P/Co–N–C exhibits a high open-circuit voltage of 1.46 V and the good flexibility with different angles. This work provides inspiration to explore new strategies for electrochemical energy conversion and storage.  相似文献   

15.
A series of Co-doped Ni–Fe spinels (NiCoxFe(2-x)O4, x = 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2) were prepared at optimum calcination temperature (700 °C) by the sol-gel method and then applied for the electrocatalytic oxidation over glycerol. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Tafel curve, and chronoamperometry (i-t) were performed to investigate electrochemical performance of as-prepared spinel catalysts. The results showed that NiCo0·8Fe1·2O4 exhibited distinct redox peaks and the larger CV area (626.2 ± 0.03 μV A cm?2), lower Rct (42.42 ± 0.03 Ω) and Tafel slope (21 mV dec?1) than that of pristine NiFe2O4 and NiCo2O4, signifying Co-doped NiFe2O4 is beneficial to accelerate the catalytic oxidation of glycerol. Moreover, the ECSA and stability of NiCo0·8Fe1·2O4 were also observably improved. This excellent performance is comparable to that of commercial Pt/C (20 wt.%)-SA. The enhanced electrocatalytic property of NiCo0·8Fe1·2O4 is ascribed to the uneven distribution of oxygen in NiFe2O4 structure caused by Co doping, thus forming oxygen defect sites.  相似文献   

16.
It is significant but challenging to develop noble-metal-free electrocatalysts exhibiting high activity and long-term stability toward hydrogen evolution reaction (HER) to satisfy the ever-increasing demand for clean and renewable energy. Herein, an environment-friendly and low-temperature electroless deposition method is developed for the synthesis of Co–Ni–P hollow nanospheres anchored on reduced graphene oxide nanosheets (Co–Ni–P/RGO). By optimizing the molar ratio of Ni/Co precursor, composition dependent electrocatalytic performances toward HER of nanostructured Co–Ni–P/RGO electrocatalyst are investigated in 1.0 M KOH solution. The results suggest that when the molar ratio of Ni/Co precursor is 3/7, as-prepared ternary Co–Ni–P/RGO electrocatalyst exhibits a remarkably enhanced HER activity in comparison to binary Ni–P/RGO and Co–P/RGO electrocatalysts, delivering a current density of 10 mA cm−2 at the overpotential of only 207 mV. The value of Tafel slope for nanostructured Co–Ni–P/RGO electrocatalyst reveals that HER process undergoes Volmer-Heyrovsky mechanism. Besides, nanostructured Co–Ni–P/RGO electrocatalyst features superior stability under alkaline condition. The results suggest that nanostructured composite of Co–Ni–P hollow nanospheres/RGO is a potential candidate for hydrogen production through water splitting.  相似文献   

17.
Significant efforts have been made to develop highly active non-noble metal-based, affordable metallic and stable electro-catalysts for hydrogen evolution reaction (HER). Strong acid and bases are now used in HER operations to achieve large-scale, sustained H2 fuel production. However, few studies have utilized phosphate-buffered neutral electrolytes (PBS) in the field of neutral electrolyte technology. In this work, a certain alloys with a Ni–Cr basis have been produced as favorable components for the HER under neutral conditions. Additionally, the current investigations are emphasizing on the concentration of buffer phosphate species in the HER activity of various materials. By employing polarization and electrochemical impedance spectroscopy (EIS) in neutral solutions, the electro-catalytic activity of new alloys on HER was evaluated. According to the preliminary findings, the examined Ni–Cr-based alloys show superior HER catalytic activity in neutral electrolytes. Additionally, the Ni–Cr alloy matrix with Fe and Mo added enhances HER electrocatalytic efficiency while lowering interfacial charge transfer resistance. Due to its low overpotential of ?297 mV @ 10 mA cm?2 and Tafel slope of 94 mV dec?1 in 1.0 M PBS media, the Ni–Cr–Mo–Fe alloy exhibits an efficient HER, suggesting that the Ni–Cr–Mo–Fe electrode will be a potential noble metal-free electro-catalyst for HER. The Ni–Cr–Mo–Fe cathode is a readily available and affordable material for the production of HER in neutral medium.  相似文献   

18.
In this research, three Pd decorated Ni and Co catalyst nanoparticle were synthesized on reduced graphene oxide (rGO) supports are synthesized through a facile solvothermal procedure. Borohydride oxidation reaction (BOR) activity and performance of prepared electrocatalysts respect to NaBH4 oxidation is evaluated by various electrochemical techniques in the three-electrode and the fuel cell configuration. Among the prepared catalysts, Pd10–Ni45–Co45/rGO exhibits the highest BOR activity. The cyclic voltammograms showed that the measured current at 0.5 V for the electrode of Pd10–Ni45–Co45/rGO is as much as 108 mA cm−2 higher than Pd10–Ni90/rGO and 185 mA cm−2 higher than Pd10Co90/rGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra were employed to study the morphology and crystal structure of the prepared catalyst. The results of DBFC test show that the Pd10–Ni45–Co45/rGO nanoparticles as anodic catalyst, enhanced power density to 50.4 mW cm−2 which is 10.5% and 45.2% higher than power density of DBFCs with Pd10–Ni90/rGO (45.6 mW cm−2) and Pd10Co90/rGO (34.7 mW cm−2) anode catalysts, respectively. These results indicate that the competency of operating procedure for assembling nickel alloys electrodes can improve the activity of the prepared catalysts for BOR considerably.  相似文献   

19.
In this study, a simple and fast electrochemical method was employed to synthesis molybdenum diselenide thin film. The morphology, structure and chemical composition of the nanocomposites were investigated by field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The progressive effects of transition metal ions including Ni, Cu, and Co were surveyed on the hydrogen evolution activity of MoSe2 thin films. Co/MoSe2 nanocomposite thin films has significant electrocatalytic activity as compared to other samples, In order to achieve higher performance, preparing Co/MoSe2/RGO nanocomposite thin film, two strategies including layer by layer electrodeposition and co-electrodeposition has been employed. The presence of reduced graphene oxide leading to the onset potential shifts to more positive values and increase the current density. Also, results showed that the Co/MoSe2/RGO nanocomposite prepared by co-electrodeposition exhibits the best electrochemical hydrogen evolution at onset potential of −0.18 with an overpotential of −0.45 V.  相似文献   

20.
Ternary mixed oxides of Fe, Ni and Mo with molecular formulas FexNi1−xMoO4 (x = 0.25, 0.50 and 0.75) have been prepared by a co-precipitation method and investigated for their structural and electrocatalytic properties by XRD, AFM, electrochemical impedance spectroscopy and anodic Tafel polarization. Results indicate that the apparent oxygen evolution activity of the base (NiMoO4) electrode significantly increases with introduction of Fe from 0.25 to 0.75 mol. The Tafel slope for the oxygen evolution reaction at low overpotentials is found to be only ∼35 mV on Fe-substituted oxides, while it was ∼75 mV on the base oxide. The reaction follows the first order kinetics with respect to OH concentration, regardless of Fe content in the oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号