首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A mixture of swine manure and pineapple waste was used to check the feasibility of producing biohythane in a newly-developed single-stage anaerobic fermentation system that having immobilized H2 and CH4-producing microbes in a two-chamber digester. Tested hydraulic retention times (HRT) were from 96 h to 6 h. HRT 6 h resulted in peak gas production performance with hydrogen production rate 1240 and methane production rate 812 mL/L-d. Besides, the synergistic function of generation and consumption of volatile fatty acids in this hybrid biosystem had a significant impact on biohythane composition with acetate and butyrate being the dominant liquid metabolites. Chemical oxygen demand and ammonium removal efficiencies were 52.4 and 78.8%, respectively during steady-state conditions. Based on the experimental findings, prospects for field applications of single-stage biohythane fermentation were suggested.  相似文献   

2.
In this study, a two-stage biohythane production system was used to treat swine manure to solve the high Chemical Oxygen Demand (COD) concentration and verify the total energy recovery between the two-stage and a traditional single-stage system. Experiments were carried out in single-stage methane production, two-stage biohythane production in long Hydraulic Retention Time (HRT), and short HRT. The COD removal efficiency and energy recovery were finally compared between single-stage (CH4 fermenter) and two-stage (H2+ CH4 fermenter) systems. The results showed that the methane production rate of 53.2 ± 2.7 mL/d.L, the COD removal efficiency of 29.6 ± 5.8%, and total energy recovery of 2.9 ± 0.1 kJ/L.d was obtained in the single-stage of methane production system with HRT 11.08 d, pH 7, and temperature 55 °C, respectively. In the two-stage of hydrogen and methane productions system, the hydrogen production rate of 1.8 ± 0.7 mL/d.L, the methane production rate of 65.7 ± 2.5 mL/d.L, the COD removal rate was 97.8 ± 1.7%, and the total energy recovery of 3.6 ± 0.1 kJ/L.d was obtained and stabilized when the sugary wastewater content gradually reduced to 0%. This study shows that the methane production rate increases 20%, COD removal efficiency increases to 97.8 ± 1.7%, and total energy recovery increases 30%. At the same time, the single-stage (CH4 fermenter) switched to a two-stage (H2+ CH4 fermenter) system. The two-stage anaerobic biohythane production system successfully treated the high organic swine manure and obtained a higher energy recovery against the traditional single-stage of the biomethane production system.  相似文献   

3.
The pilot-scale of two-stage thermophilic (55 °C) for biohythane production from palm oil mill effluent (POME) was operated at hydraulic retention time (HRT) of 2 days and organic loading rate (OLR) of 27.5 gCOD/L⋅d) for first stage and HRT of 10 days and OLR of 5.5 gCOD/L⋅d for second stage. Biohythane production rate was 1.93 L-gas/L⋅d with biogas containing 11% H2, 37% CO2, and 52% CH4. Recirculation of methane effluent mixed with POME at a ratio of 1:1 can control pH in the first stage at an optimal range of 5.0–6.5. Microbial community in hydrogen stage dominated by Thermoanaerobacterium sp., while methane stage dominated by Methanosarcina sp. The H2/CH4 ratio of biohythane was 0.13–0.18 which suitable for vehicle fuel. Biohythane production from POME could be promising cleaner biofuel with flexible and controllable H2/CH4 ratio.  相似文献   

4.
The suitability of molasses, Napier grass (Pennisetum purpureum), empty fruit bunches (EFB), palm oil mill effluent (POME), and glycerol waste as a co-substrate with Chlorella sp. TISTR 8411 biomass for biohythane production was investigated. Mono-digestion of Chlorella biomass had hydrogen and methane yield of 23–35 and 164–177 mL gVS−1, respectively. Co-digestion of Chlorella biomass with 2–6% TS of organic wastes was optimized for biohythane production with hydrogen and methane yield of 17–75 and 214–577 mL gVS−1, respectively. The hydrogen and methane yield from co-digestion of Chlorella biomass with molasses, POME, and glycerol waste was increased by 8–100% and 80–264%, respectively. The biohythane production of co-digestion of Chlorella was 6–11 L L-mixed waste−1 with an optimal C/N ratio range of 19–41 and H2/CH4 ratio range of 0.06–0.3. Co-digestion of Chlorella biomass was significantly improved biohythane production in term of yield, production rate, and kinetics.  相似文献   

5.
The effect of trace metals supplementation into palm oil mill effluent on biohythane production and responsible microbial communities in thermophilic two-stage anaerobic fermentation was investigated. High biohythane yields were linked to Ni/Co/Fe supplementation (10, 6 and 20 mg L−1, respectively) with maximum H2 and CH4 yields of 139 mL H2 gVS−1 and 454 mL CH4 gVS−1, respectively. The Ni/Co/Fe supplementation resulted in higher numbers of Bacillus sp., Clostridium sp. and Thermoanaerobacterium sp. together with increasing hydrogenase expression level leading to increasing hydrogen yields of 90.4%. The numbers of Methanosarcina, Methanomassiliicoccus, and Methanoculleus were enhanced by Ni/Co/Fe addition, accompanied by 21.7% higher methane yields. No correlation between methyl coenzyme-M reductase expression level and methane yields was observed. The Ni/Co/Fe supplementation improved gas production in the two-stage biohythane process via enhancing a number of viable hydrogen-producing bacteria together with hydrogenase activity in H2 stage and enhancing number methanogens in the CH4 stage.  相似文献   

6.
An innovative multistage anaerobic hythane reactor (MAHR) which combines an internal biofilm (MH) and an external up-flow sludge blanket (MM) was proposed to produce biohythane from wastewater. The effect of pH on its biohythane production and microbial diversity was performed. Results showed that the maximum hydrogen production rate (4.900 L/L/d) was achieved at a pH of 6.0, in comparison to a maximum methane production rate of 10.271 L/L/d at a pH of 6.5. In addition, a suitable hythane (H2/(H2+CH4) of 16.06%) production can be achieved in MH after the initial pH was adjusted from 7.0 to 6.5, and a relatively high methane yield (271.34 mL CH4/gCOD) was obtained in MM. Illumina Miseq sequencing results revealed that decreasing pH led to an increase of the acidogenesis families (Eubacteriaceae, Ruminococcaceae) in MH and an increase of hydrogenotrophic methanogens (Methanobacteriaceae) in MM. The Methanosaetaceae gradually occupied a major portion after a long period of recovery. This work demonstrated the unique advantages of MAHR for the biohythane production under optimal pH conditions.  相似文献   

7.
Anaerobic digestion is an attractive process for generation of hydrogen and methane, which involves complex microbial processes on decomposition of organic wastes and subsequent conversion of metabolic intermediates to hydrogen and methane. Comparative performance of a sequential hydrogen and methane fermentation in two stage process and methane fermentation in one stage process were tested in batch reactor at varying ratios of feedstock to microbial inoculum (F/M) under mesophilic incubation. F/M ratios influence biogas yield, production rate, and potential. The highest H2 and CH4 yields of 55 and 94 mL g−1 VS were achieved at F/M of 7.5 in two stage process, while the highest CH4 yield of 82 mL g−1 VS in one stage process was observed at the same F/M. Acetic and butyric acids are the main volatile fatty acids (VFAs) produced in the hydrogen fermentation stage with the concentration range 10–25 mmol L−1. Little concentrations of VFAs were accumulated in methane fermentation in both stage processes. Total energy recovery in two stage process is higher than that in one stage by 18%. This work demonstrated two stage fermentation achieved a better performance than one stage process.  相似文献   

8.
A real textile desizing wastewater (TDW) was coagulation-pretreated to enhance its potential of biohydrogen production. Batch fermentation showed that the hydrogen production was efficiently enhanced (550 and 120% increments for hydrogen production rate and hydrogen yield, respectively) and the production performance was substrate-concentration dependent. A peak hydrogen production rate of 3.9 L/L-d and hydrogen yield of 1.52 mol/mol hexose were obtained while using coagulant GGEFloc-653 at a dosage of 1 g/L to pretreat TDW with the concentration of 15 g total sugar/L. The coagulation-pretreatment could have butyrate-type fermentation with high biohydrogen production and the removed some toxic materials that might drive the metabolic pathways to those not favoring biohydrogen production. Based on the data obtained, strategies to operate the coagulation and biohydogen fermentation are suggested. Moreover, fermentation effluent utilization such as for two-stage biogas production and further biohythane (a mixture of H2 and CH4) generation are also elucidated.  相似文献   

9.
A biohythane process based on wheat straw including: i) pretreatment, ii) H2 production using Caldicellulosiruptor saccharolyticus, iii) CH4 production using an undefined consortium, and iv) gas upgrading using an amine solution, was assessed through process modelling including cost and energy analysis. According to simulations, a biohythane gas with the composition 46–57% H2, 43–54% CH4 and 0.4% CO2, could be produced at high production rates (2.8–6.1 L/L/d), with 93% chemical oxygen demand (COD) reduction, and a net energy yield of 7.4–7.7 kJ/g dry straw. The model was calibrated and verified using experimental data from dark fermentation (DF) of wheat straw hydrolysate, and anaerobic digestion of DF effluent. In addition, the effect of gas recirculation was investigated by both wet experiments and simulation. Sparging improved H2 productivities and yields, but negatively affected the net energy gain and cost of the overall process.  相似文献   

10.
Hydrogen production from dark fermentation is a potential source of sustainable fuel when it is generated from waste. This study compared hydrogen production resulting from fermentation using raw and detoxified tequila vinasse. Vinasse was detoxified with granular activated charcoal, which was used to adsorb compounds that could inhibit the production of hydrogen by dark fermentation. In batch cultures detoxification of vinasse led to up to 20% higher maximum velocities of hydrogen production, a 5.4 h reduction in the lag phase and an 11% higher molar yield, compared to results obtained with raw vinasse. Losses of sugars after detoxification provoked that the specific hydrogen volumetric yields obtained with detoxified vinasse were 30–40% lower with 5 g COD/L and 15 g COD/L initial concentrations, compared to the ones obtained with raw vinasse. For an initial 30 g COD/L no differences in specific hydrogen yields were observed between raw or detoxified vinasse in batch fermentation. Continuous culture fermentation of vinasse showed hydrogen production rates between 1.32 ± 0.07 to 1.39 ± 0.14 NL H2/L-d when extra nutrients were added, while a stable production of hydrogen through fermentation of detoxified vinasse could not be maintained despite nutrient addition. Production of hydrogen from vinasse diluted with water with no additional nutrients was assessed and rates close to 0.42 ± 0.02 NL H2/L-d and hydrogen content close to 37% were obtained. Accumulation of lactic acid and a predominant production of butyric acid over acetic acid suggested that the fermentation dynamics of vinasse with no supplementary nutrients were especially susceptible to high substrate loading rates and prolonged hydraulic retention times.  相似文献   

11.
A novel strategy to discontinuously increase the biomass concentration in a continuous stirred-tank reactor was evaluated to enhance the performance of dark fermentation. Different concentrations of biomass were evaluated at organic loading rates (OLR) ranging from 90 to 160 g lactose/L-d with a hydraulic retention time (HRT) of 6 h. The study revealed that the discontinuous increase of biomass enhanced the hydrogen (H2) production rates and carboxylic acids concentrations by 19–25% and 8–23%, respectively. In particular, a maximum H2 production rate of 30.8 L H2/L-d with carboxylic acids concentration of 20 g/L was reached at an OLR of 138 g lactose/L-d with a biomass concentration of 15 g volatile suspended solids/L. The analysis of microbial communities showed the co-dominance of Clostridium and lactic acid bacteria. Overall, the discontinuous increase of biomass was an effective strategy to improve the performance of suspended-biomass reactors operated at high OLR and low HRT.  相似文献   

12.
Biohydrogen is usually produced via dark fermentation, which generates CO2 emissions and produces soluble metabolites (e.g., volatile fatty acids) with high chemical oxygen demand (COD) as the by-products, which require further treatments. In this study, mixotrophic culture of an isolated microalga (Chlorella vulgaris ESP6) was utilized to simultaneously consume CO2 and COD by-products from dark fermentation, converting them to valuable microalgae biomass. Light intensity and food to microorganism (F/M) ratio were adjusted to 150 μmol m−2 s−1 and F/M ratio, 4.5, respectively, to improve the efficiency of assimilating the soluble metabolites. The mixotrophic microalgae culture could reduce the CO2 content of dark fermentation effluent from 34% to 5% with nearly 100% consumption of soluble metabolites (mainly butyrate and acetate) in 9 days. The obtained microalgal biomass was hydrolyzed with 1.5% HCl and subsequently used as the substrate for bioH2 production with Clostridium butyricum CGS5, giving a cumulative H2 production of 1276 ml/L, a H2 production rate of 240 ml/L/h, and a H2 yield of 0.94 mol/mol sugar.  相似文献   

13.
In the context of biofuel production and achieving sustainable bioeconomy, the use of lignocellulosic and algae biomass in anaerobic fermentation processes yields biohythane that has a typical composition of 10–15% H2, 50–55% CH4 and 30–40% CO2. Using organic biomass-based substrates has been shown to minimize environmental impacts due to the versatile production of high-value products under normal operating conditions that are practically achievable. However, the biohythane yield depends on different factors such as the biomass type, the organic loading rate, soluble metabolic products formed, the type of fermentation (single/dual stage) and the pretreatment strategy adopted for the biomass. Different pretreatment strategies based on physical, chemical and biological processes have been proposed in the literature. In this review, improvements in biohythane yield as a result of these pretreatment strategies, the need/effect of inoculum enrichment, the effects of pH, temperature, trace element addition and organic loading rate has been reviewed. Finally, the major developments of improving biohythane yield due to the addition of co-substrates and the current trends are discussed.  相似文献   

14.
The green energy sustainable house based on bio-hydrogen and bio-methane energy technologies proposed in this study employs dark fermentation technology to complete a scheme for green energy sustainable house that includes energy production, storage, distribution control, load applications, recycling, waste treatment, and reuse. In order to resolve the problem of wastewater discharge from hydrogen production in green energy sustainable houses, this study proposes wastewater chemical oxygen demand (COD) treatment research, and suggests the use of two-stage anaerobic treatment to produce two types of bio-energy i.e. hydrogen and methane, while simultaneously reducing COD levels.Methane production employed a condensed molasses fermentation solubles (CMS) and hydrogen fermentation tank effluent as a substrate to test the COD reducing efficiency and overall efficiency of methane production. It was found that if CMS is used during the hydrolysis and acidogenesis stages, the maximum carbohydrate degradation rate will be approximately 70% (F/M ratio of 1.9-2.3), and the COD removal rate will increase from 15 to 20% (F/M ratio of 1.9-2.3) to 68% (F/M ratio of 0.5). This study showed that the total gas (H2 and CH4) production yield from effluent of hydrogen fermentation tank (56.2 KJ/mol substrate) is greater than the value for CMS.In this study, a 3.2 m3 anaerobic hydrogen reactor is evaluated to provide a family with 3-4 kW of power. When acclimatization is performed under conditions of 20 g COD/L substrate and hydraulic retention time (HRT) of 8 h, the COD removal rate can reach approximately 50%. If a methane-generating reactor with a 95% COD removal rate is used to degrade effluent from the hydrogen reaction tank, it will be possible to reduce the COD of organic effluent to under 500 mg/L. Since this water quality is not far from that of ordinary untreated household wastewater (approximately 300-500 mg COD/L), the effluent can be discharged into a community sewer system and treated in a community sewage treatment facility.  相似文献   

15.
The addition of external redox mediators (e.g., humic substances) as a strategy to enhance the production of H2 and carboxylic acids through mixed-culture dark fermentation was investigated. Pahokee Peat and Leonardite humic substances along the anthraquinone-2,6-disulfonate (AQDS) humic model compound were evaluated. The use of Pahokee peat into dark fermentation assays reached an H2 potential of 618.2 ± 28.9 mL H2/L, equivalent to an increase of 8% compared with the control experiment. In contrast, the addition of Leonardite (in its basal redox state) as a redox mediator increased the H2 potential by up to 14.5% and achieved 655.8 mL H2/L-d, which was higher than the control's H2 production of 572.6 mL H2/L-d. Moreover, the use of chemically reduced Leonardite led to the highest H2 potential (1158.6 mL H2/L-d) which was about 1.8-fold the H2 potential found in the control. Overall, experimental and production-modeling results suggest that external redox mediators not only served as an additional source of electrons for dark-fermentative pathways but also as electron acceptors. Electrons from redox mediators were likely transported through membrane proteins and could be used to reduce NAD+ and Fdox. Results indicated that electrons were preferably channeled through the butyrate pathway when reduced substances were applied.  相似文献   

16.
Catalytic decomposition of methane (CDM; CH4 → C + 2H2) is expected to be used for clean hydrogen production because CDM does not emit carbon dioxide. Recently, it was reported that Pd–based catalysts promotes CDM, simultaneously facilitating coupling of CH4 to form C2 hydrocarbons. In this study, varieties of supported Pd–M alloy catalysts (M = Fe, Co, Ni, Cu, Zn, Ga, In, Sn, Au, Pb, and Bi) were synthesized and their activities for the CDM and CH4 coupling were examined. The catalytic activity for CH4 strongly depended on the types of Pd–M. Pd–M/Al2O3 (M = Ni, Fe, Co, Au) showed high activity for CDM. In addition to the production of hydrogen by the CDM, Pd–Au/Al2O3 formed C2 hydrocarbons such as ethane and ethylene via the coupling of CH4. Effects of Pd/Au ratio and reaction temperatures were examined and the role of Au for the CH4 conversion reaction was discussed.  相似文献   

17.
The influence of operating parameters over dry reforming of methane reaction was evaluated using a Ni-based catalyst obtained after calcination of a hydrotalcite-like precursor. The studied variables were mass to flow ratio (W/F), reaction temperature and CO2/CH4 ratio. Maximum methane and carbon dioxide conversions were achieved at W/F ratios above 0.21 g h L−1. The higher the W/F ratio was, the lower amount of water was formed, which led to a higher H2/CO ratio. The increase in reaction temperature produced an increase in conversions. Water concentration in the outlet stream showed a maximum at 600 °C. At this temperature, reverse water–gas-shift reaction (RWGS) was favoured because it is endothermic. However, steam reforming and carbon gasification were also favoured and they consumed great part of the water produced. CO2/CH4 ratios above 1 led to a higher CH4 conversion but selectivity to hydrogen decreased because RWGS reaction was favoured. When CO2/CH4 was below unity, CH4 conversion decreased but less amount of water was produced so a higher H2 selectivity was achieved. The catalyst exhibited good stability over dry reforming of methane under all the tested conditions, which may be ascribed to its high basicity. This property improved CO2 adsorption and then RWGS reaction and carbon gasification.  相似文献   

18.
This study presents an integration of acidogenesis (dark-fermentation) and methanogenesis for green hythane/biohythane production from food waste in two stages (S–I and S-II) and phases (P–I and P-II) of operational variations. The regulatory influence of biocatalyst and redox environment on anaerobic fermentation was evaluated  through a rapid protocol in the context of biogas up-gradation with reference to bio-hydrogen (bio-H2), biomethane (CH4), bio-hythane (H2+CH4) and their composition (H2/(H2+CH4)) as major markers. Bioreactors with two different parent cultures (heat-shock pretreated and untreated) were operated at pH 6 and 7 in two phases to overcome the impediment of single-phase operation aiming for maximum energy recovery from the untreated substrate of P–I. Integration of S–I with S-II was beneficial to achieve 1.22 times higher cumulative bio-hythane production (4.25 L) compared to S–I (3.47 L) condition alone. The bio-hythane composition mimics the H2 enriched CNG (H-CNG) and showed the potential to be implemented for biogas up-gradation as a tool.  相似文献   

19.
S.C. Kim  Y.N. Chun   《Renewable Energy》2008,33(7):1564-1569
The purpose of this paper is to investigate the characteristics and optimum operating conditions of the plasmatron-assisted CH4 reforming reaction for the hydrogen-rich gas production. In order to increase the hydrogen production and the methane conversion rate, parametric screening study was conducted at various CH4 flow ratio and steam flow ratio and with and without adding catalyst in the reactor. High-temperature plasma flame was made with air and arc discharge, and the air flow rate and the input power were set to 5.1  L/min and 6.4 kW, respectively.When the steam flow ratio was 30.2%, the hydrogen production was maximized and the optimal methane conversion rate was 99.7%. Under these optimal conditions, the following syngas concentrations were determined: H2, 50.4%; CO, 5.7%; CO2, 13.8%; and C2H2, 1.1%. H2/CO ratio was 9.7 and the hydrogen yield was 93.7%.  相似文献   

20.
Biohythane is typically composed of 60/30/10 vol% CH4/CO2/H2 and can be produced via two-stage anaerobic digestion of renewable and low carbon biomass with much greater efficiency compared with CH4/CO2 biogas. This work investigates the effects of fuel variability on the electrical performance and fuel processing of a commercially available anode supported solid oxide fuel cell (SOFC) operating on biohythane mixtures at 750 °C. Cell electrical performance was characterised using current-voltage curves and electrochemical impedance spectroscopy. Fuel processing was characterised using quadrupole mass spectroscopy. It is shown that when H2/CO2 is blended with CH4 to make biohythane, the SOFC efficiency is significantly increased, high SOFC durability is achieved, and there are considerable savings in CH4 consumption. Enhanced electrical performance was due to the additional presence of H2 and promotion of CH4 dry reforming, the reverse Boudouard and reverse water-gas shift reactions. These processes alleviated carbon deposition and promoted electrochemical oxidation of H2 as the primary power production pathway. Substituting 50 vol% CH4 with 25/75 vol% H2/CO2 was shown to increase cell power output by 81.6% at 0.8 V compared with pure CH4. This corresponded to a 3.4-fold increase in the overall energy conversion efficiency and a 72% decrease in CH4 consumption. A 260 h durability test demonstrated very high cell durability when operating on a typical 60/30/10 vol% CH4/CO2/H2 biohythane mixture under high fuel utilisation due to inhibition of carbon deposition. Overall, this work suggests that decarbonising gas grids by substituting natural gas with renewably produced H2/CO2 mixtures (rather than pure H2 derived from fossil fuels), and utilising in SOFC technology, gives considerable gains in energy conversion efficiency and carbon emissions savings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号