首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An improved fuzzy-based energy management strategy (EMS) is proposed for a tourist ship used hybrid power system with multiple power sources consisting of fuel cell(FC)/photovoltaic cell(PV)/battery(BAT)/super-capacitor(SC). The power demand from propeller and user terminal is afforded by the power sources connecting to power converters. To obtain more superior performance of the power system, the maximum power point tracking (MPPT) algorithm is employed to optimize the PV. Meanwhile, the improved fuzzy logic control based on dynamic programming (DP) associated with wavelet analysis and PI control are employed to achieve the output power optimal distribution and online control. In particular, the MPPT algorithm can improve the utilization of solar energy, and the SC can well absorb the high frequency power and reduce the fluctuation of the battery and FC that exhibits the potential of their lifetime extension. The FC outputs the high and stable power satisfying the ship's power demand even under the extreme work conditions. The developed model is able to illustrate well in the operation process of the hybrid power system governed by the proposed EMS. In addition, compared with the rule-based strategy, the improved fuzzy-based EMS can reduce 14.39% hydrogen consumption and keep the consistency of battery SOC.  相似文献   

2.
This paper presents a novel hourly energy management system (EMS) for a stand-alone hybrid renewable energy system (HRES). The HRES is composed of a wind turbine (WT) and photovoltaic (PV) solar panels as primary energy sources, and two energy storage systems (ESS), which are a hydrogen subsystem and a battery. The WT and PV panels are made to work at maximum power point, whereas the battery and the hydrogen subsystem, which is composed of fuel cell (FC), electrolyzer and hydrogen storage tank, act as support and storage system. The EMS uses a fuzzy logic control to satisfy the energy demanded by the load and maintain the state-of-charge (SOC) of the battery and the hydrogen tank level between certain target margins, while trying to optimize the utilization cost and lifetime of the ESS. Commercial available components and an expected life of the HRES of 25 years were considered in this study. Simulation results show that the proposed control meets the objectives established for the EMS of the HRES, and achieves a total cost saving of 13% over other simpler EMS based on control states presented in this paper.  相似文献   

3.
In this study, a multi-source hybrid power system consisting of wind turbine (WT), photovoltaic (PV) solar unit, proton exchange membrane (PEM) FC and battery is proposed. The WT and PV generation systems are considered as the main power sources for utilizing the available renewable energy. The FC system is proposed as the back-up generation combined with electrolyzer unit and battery picks up the fast load transients and ripples. In such a hybrid system, energy management plays an important role for the overall system performance and durability. From this perspective, a fuzzy logic based intelligent controller is considered in this study. Besides, a detailed minute-scale meteorological and load demand data is utilized in the simulation process and the importance of utilization of such detailed data is presented. This detailed analysis may be valuable for evaluating the feasibility of grid-independent hybrid renewable energy units for upcoming power systems.  相似文献   

4.
Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. Focusing on the inevitable impact on the grid caused by strong randomicity and apparent intermittency of photovoltaic (PV) generation system, modeling and control strategy of pure green and grid-friendly hybrid power generation system based on hydrogen energy storage and supercapacitor (SC) is proposed in this paper. Aiming at smoothing grid-connected power fluctuations of PV and meeting load demand, the alkaline electrolyzer (AE) and proton exchange membrane fuel cell (PEMFC) and SC are connected to DC bus of photovoltaic grid-connected generation system. Through coordinated control and power management of PV, AE, PEMFC and SC, hybrid power generation system friendliness and active grid-connection are realized. The validity and correctness of modeling and control strategies referred in this paper are verified through simulation results based on PSCAD/EMTDC software platform.  相似文献   

5.
This research presents an optimum design scheme and a hierarchical energy management strategy for an island PV/hydrogen/battery hybrid DC microgrid (MG). In order to efficiently utilize this DC MG, the optimum structure and sizing scheme are designed by HOMER pro (Hybrid Optimization of Multiple Energy Resources) software. The designed structure of hydrogen MG includes a PV generation, a battery as well as a hydrogen subsystem which composes a fuel cell (FC) system, an electrolyzer and hydrogen tank. To improve the robustness and economy of this DC MG, this study schedules a hierarchical energy management method, including the local control layer and the system control layer. In the local control layer, the subsystems in this DC MG are controlled based on their inherent operating characteristics. And the equivalent consumption minimization strategy (ECMS) is applied in the system control layer, the power flow between the battery and FC is allocated to minimum the fuel consumption. An island DC MG hardware-in-loop (HIL) Simulink platform is established by RT-LAB real-time simulator, and the simulation results are presented to validate the proposed energy management strategy.  相似文献   

6.
This paper evaluates the option of using a new powertrain based on fuel cell (FC), battery and supercapacitor (SC) for the Urbos 3 tramway in Zaragoza, Spain. In the proposed powertrain configuration, a hydrogen Proton-Exchange-Membrane (PEM) FC acts as main energy source, and a Li-ion battery and a SC as energy support and storage systems. The battery supports the FC during the starting and accelerations, and furthermore, it absorbs the power generated during the regenerative braking. Otherwise, the SC, which presents the fastest dynamic response, acts mainly during power peaks, which are beyond the operating range of the FC and battery. The FC, battery and SC use a DC/DC converter to connect each energy source to the DC bus and to control the energy exchange. This configuration would allow the tramway to operate in an autonomous way without grid connection. The components of the hybrid tramway, selected from commercially available devices have been modeled in MATLAB-Simulink. The energy management system used for controlling the components of the new hybrid system allows optimizing the fuel consumption (hydrogen) by applying an equivalent consumption minimization strategy. This control system is evaluated by simulations for the real driving cycle of the tramway. The results show that the proposed control system is valid for its application to this hybrid system.  相似文献   

7.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

8.
This paper presents a sizing method and different control strategies for the suitable energy management of a stand-alone hybrid system based on photovoltaic (PV) solar panels, hydrogen subsystem and battery. The battery and hydrogen subsystem, which is composed of fuel cell (FC), electrolyzer and hydrogen storage tank, act as energy storage and support system. In order to efficiently utilize the energy sources integrated in the hybrid system, an appropriate sizing is necessary. In this paper, a new sizing method based on Simulink Design Optimization (SDO) of MATLAB was used to perform a technical optimization of the hybrid system components. An analysis cost has been also performed, in that the configuration under study has been compared with those integrating only batteries and only hydrogen system. The dynamic model of the designed hybrid system is detailed in this paper. The models, implemented in MATLAB-Simulink environment, have been designed from commercially available components. Three control strategies based on operating modes and combining technical-economic aspects are considered for the energy management of the hybrid system. They have been designed, primarily, to satisfy the load power demand and, secondarily, to maintain a certain level at the hydrogen tank (hydrogen energy reserve), and at the state of charge (SOC) of the battery bank to extend its life, taking into account also technical-economic analysis. Dynamic simulations were performed to evaluate the configuration, sizing and control strategies for the energy management of the hybrid system under study in this work. Simulation results show that the proposed hybrid system with the presented controls is able to provide the energy demanded by the loads, while maintaining a certain energy reserve in the storage sources.  相似文献   

9.
This paper intends to propose a novel control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and batteries as a complementary source, for hybrid power sources for distributed generation system, particularly for future electric vehicle applications. The control, which takes into account the slow dynamics of a fuel cell (FC) in order to avoid fuel (hydrogen and air) starvation problems, is obviously simpler than state machines used for hybrid source control. The control strategy lies in using an FC for supplying energy to battery and load at the dc bus. The structure is an FC current, battery current, and battery state-of-charge (SOC) cascade control. To validate the proposed principle, a hardware system is realized by analogical circuits for the FC current loop and numerical calculation (dSPACE) for the battery current and SOC loops. Experimental results with small-scale devices (a 500 W PEM FC and 33 Ah, 48 V lead-acid battery bank) illustrate the excellent control scheme during motor drive cycles.  相似文献   

10.
为了评价燃料电池混合动力系统能量管理策略的经济性,对基于状态机和模糊逻辑2种能量管理策略的燃料电池混合动力叉车的价值损耗进行分析。首先,通过分析燃料电池和锂电池的工作特性,分别构建依赖实际工况的燃料电池单体电压衰减率模型和锂电池容量衰减率模型;同时定义计及燃料电池氢耗量的燃料电池混合动力系统的综合价值损耗指标。其次,通过测试叉车极限工况,计算燃料电池功率和锂电池容量,并根据母线电压确定锂电池SOC范围。最后,设计基于状态机和模糊逻辑的2种燃料电池混合动力叉车能量管理策略,并通过仿真分析在叉车一次循环工况下2种能量管理的价值损耗。研究结果表明:相较于模糊逻辑策略,采用状态机策略造成燃料电池寿命损耗提高7.81%,氢耗量提高1.89倍,锂电池寿命损耗减小21.33%。  相似文献   

11.
The energy management and trajectory tracking control are crucial to realize long-endurance autonomous flight for hybrid electric UAVs. This study aims to comprehensively consider energy management and trajectory tracking for hybrid electric fixed wing UAVs with photovoltaic panel/fuel cell/battery. A double-layer fuzzy adaptive nonlinear model predictive control method (DFNMPC) is proposed. Separated by the surplus demand power, energy management and trajectory tracking problem are decoupled into the high-layer fuzzy adaptive nonlinear model predictive controll problem (H-FNMPC) and low-layer fuzzy adaptive nonlinear model predictive controll problem (L-FNMPC). H-FNMPC solves the trajectory tracking and navigation control probelm for the greatest benefit of solar energy. L-FNMPC solves the power allocation problem of hybrid energy system for minimum equivalent hydrogen consumption. A fuzzy adaptive prediction horizon adjustment method based on UAV maneuvering degree is proposed to effectively improve proposed method adaptability to different mission profiles. Analogously, a fuzzy adaptive equivalent hydrogen consumption factor adjustment method in L-FNMPC is proposed to ensure the flexible utilization of battery. In addition, an equivalent hydrogen flow rate calculation method based on the real-time current ratio is proposed for PV/FC/Battery hybrid energy system. Numerical simulation results including a spiral trajectory tracking and a quadrilateral trajectory tracking, demonstrate that DFNMPC can simultaneously handle energy management and trajectory tracking problem for hybrid electric UAVs. Compared to hierarchical fuzzy state machine strategy, DFNMPC can save 13.3% hydrogen for the spiral trajectory tracking, and 56.9% for the quadrilateral trajectory tracking. It indicates that the energy efficiency can be improved from both levels of energy management and flight motion. The proposed method prospected for exploring high-energy-efficiency autonomous flight of hybrid electric UAVs in the future.  相似文献   

12.
Although FC based electric buses are currently popular on urban streets or in short transit routes within large facilities, the version that is designed to operate on a highway, which has much higher dynamic requirements, is yet to be well developed. This research proposes to adopt the NSGA-II based multi-objective optimization scheme to optimize a fuel cell-battery-supercapacitor (SC) based FC power system (FCPS) that is specifically for a FC electric bus operating on the highway fuel economy cycle (HWFET). The optimization objectives are to minimize the FC's fuel consumption, the required battery and SC size and the battery degradation rate. More importantly, the optimization scheme is based on a combined energy management strategy (EMS) software parameter and hardware component sizing approach which is important for guaranteeing dynamically stable responses. This characteristic is achieved by imposing constraints that limit the transient time responses the DC-Bus capacitor voltage electrical parameters upon a generic step change in load power. Results demonstrate that dynamic stability can be guaranteed with proper software parameter and hardware components combinations without any trade-off requirements with the optimizer objectives. Moreover, the system mass and the battery degradation objectives are in trade-off but don't have any dependence to hydrogen consumption.  相似文献   

13.
This paper presents an experimental study of a standalone hybrid microgrid system. The latter is dedicated to remote area applications. The system is a compound that utilizes renewable sources that are Wind Generator (WG), Solar Array (SA), Fuel Cell (FC) and Energy Storage System (ESS) using a battery. The power electronic converters play a very important role in the system; they optimize the control and energy management techniques of the various sources. For wind and solar subsystem, the speed and Single Input Fuzzy Logic (SIFL) controllers are used respectively to harvest the maximum power point tracking (MPPT). To maintain a balance of energy in the hybrid system, an energy management strategy based on the battery state of charge (SOC) has been developed and implemented experimentally. The AC output voltage regulation was achieved using a Proportional Integral (PI) controller to supply a resistive load with constant amplitude and frequency. According to the obtained performances, it was concluded that the proposed system is very promising for potential applications in hybrid renewable energy management systems.  相似文献   

14.
针对光伏并网系统中光伏微电源出力的波动性和间歇性,将蓄电池和超级电容器构成的混合储能系统HESS(hybrid energy storage system)应用到光伏并网系统中可以实现光伏功率平滑、能量平衡以及提高并网电能质量。在同时考虑蓄电池的功率上限和超级电容的荷电状态(SOC)的情况下,对混合储能系统提出了基于超级电容SOC的功率分配策略;该策略以超级电容的SOC和功率分配单元的输出功率作为参考值,对混合储能系统充放电过程进行设计。超级电容和蓄电池以Bi-direction DC/DC变换器与500 V直流母线连接,其中超级电容通过双闭环控制策略对直流母线电压进行控制。仿真结果表明,所提功率分配策略能对混合储能系统功率合理分配,而且实现了单位功率因数并网,稳定了直流母线电压。  相似文献   

15.
In order to efficiently absorb more regenerative braking energy which sustains much longer compared with the conventional vehicle, and guarantee the safety of the hybrid system under the actual driving cycle of locomotive, an energy management control based on dynamic factor strategy is proposed for a scale-down locomotive system which consists of proton exchange membrane fuel cell (PEMFC) and battery pack. The proposed strategy which has self-adaption function for different driving cycles aims to achieve the less consumption of hydrogen and higher efficiency of the hybrid system. The experimental results demonstrate that the proposed strategy is able to maintain the charge state of battery (SOC) better than Equivalent Consumption Minimization Strategy (ECMS), and the proposed strategy could keep the change trend of SOC, which the final SOC is closed to the target value regardless of the initial SOC of battery. Moreover, the hydrogen consumption has been reduced by 0.86g and the efficiency of overall system has been raised of 2% at least than ECMS under the actual driving cycle through the proposed strategy. Therefore, the proposed strategy could improve the efficiency of system by diminishing the conversion process of energy outputted by fuel cell.  相似文献   

16.
Fuel cell (FC) technology is showing excellent promise for many applications ranging from portable devices to vehicular systems. A stand-alone FC may not always satisfy the fast and transient load demands of a vehicular power system. As a result, FC units are usually hybridized with supplementary sources to meet the total power demand of the vehicle. In this paper, the energy demands of a light vehicle (a passenger cart) is developed using a hybrid power supply system involving a photovoltaic (PV) panel, a proton exchange membrane fuel cell (PEMFC) and a battery based energy storage system (ESS). In addition, the details of the physical construction of the modified hybrid cart are given. The most critical feature of an energy management strategy for a multiple-source based hybrid vehicle is the sharing of fast and transient load demands among the available power sources. For this purpose, a 300-s drive cycle is created in this paper to test the effectiveness of the load sharing strategy between FC, battery pack and PV panel. It is found that PEMFC dominates slow and moderate dynamic behaviors of the vehicle, while fast response of the battery group governs the rapid dynamic behaviors. The results also show that the integrating PV panel contributes noticeably to the dynamic behaviors of the system. Furthermore, a control-oriented simulation model for a PEMFC unit is verified with experimental data to test the success of the proposed technique.  相似文献   

17.
Different energy sources and converters need to be integrated to meet sustained load demands while accommodating various natural conditions. This paper focuses on the integration of photovoltaic (PV), fuel cell (FC) and ultra-capacitor (UC) systems for sustained power generation. In the proposed system, during adequate insolation, the PV system feeds the electrolyzer to produce hydrogen for future use and transfers energy to the load side if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. If the rate of load demand increases the outside limits of FC capability, the UC bank meets the load demand above that which is provided by PV and FC systems. The main contribution of this work is the hybridization of alternate energy sources with FC systems using long and short-term storage strategies with appropriate power controllers and control strategies to build an autonomous system, with a pragmatic design and dynamic model proposed for a PV/FC/UC hybrid power generation system. The model is developed and applied in the MATLAB®, Simulink® and SimPowerSystems® environment, based on the mathematical and electrical models developed for the proposed system.  相似文献   

18.
This work presents a design methodology for a hybrid energy system based on multiple renewable power sources and bioethanol. The new concept of generation consists on having multiple power sources such as a PEM fuel cell system fed by the hydrogen produced by a bioethanol reformer and wind-solar sources working all together supervised by the energy management system. The necessary heating for the bioethanol reforming reaction can be provided by the renewable sources to enhance the efficiency of the hydrogen production. It is worth noting that, from the power balance as well as backup point of views, the hybrid system is equipped with energy storage devices. An optimal sizing methodology integrated with the energy management strategy is proposed here for designing the overall hybrid system. The suggested approach is based on genetic algorithms, using historical climate data and load demands over a period of one year. Several simulation results are given to show the methodology performance in terms of loss of power supply probability (LPSP), costs and bioethanol consumption.  相似文献   

19.
In this paper, the robust capability of HOMER and Criteria-COPRAS is deployed to explore the prospect of selecting a renewable energy system. The energy system consisting of wind turbines, solar photovoltaic (PV), fuel cell (FC), electrolyzer, hydrogen storage, and battery energy storage is intended to power a residential load in Lagos Nigeria. Based on the economic metric, the results show that the optimal system is a PV-Battery whose total net present cost (TNPC) and initial investment cost are $9060 and $3,818, respectively. However, if the energy systems are ranked based on multiple criteria (economic, technical and environmental aspects), the most preferred of the feasible energy systems is a hybrid PV-FC-wind-battery (TNPC-$10,324, initial cost: $7670). The study results indicate that, for viability in the adoption of hydrogen energy storage as part of the hybrid energy system, the selection metric should be based on more than one criterion.  相似文献   

20.
The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号