首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen is a worldwide green energy carrier, however due its low storage capacity, it has yet to be widely used as an energy carrier. Therefore, the quantum chemical method is being employed in this investigation for better understand the hydrogen storage behaviour on Pt (n = 1-4) cluster decorated C48H16 sheet. The Pt(n = 1-4) clusters are strongly bonded on the surface of C48H16 sheet with binding energies of ?3.06, ?4.56, ?3.37, and ?4.03 eV respectively, while the charge transfer from Pt(n = 1-4) to C48H16 leaves an empty orbital in Pt atom, which will be crucial for H2 adsorption. Initially, the molecular hydrogen is adsorbed on Pt(n = 1-4) decorated C48H16 sheet through the Kubas interaction with adsorption energies of ?0.85, ?0.66, ?0.72, and ?0.57 eV respectively, while H–H bond is elongated due to the transfer of electron from σ (HH) orbital to unfilled d orbital of the Pt atom, resulting in a Kubas metal-dihydrogen complexes. Furthermore, the dissociative hydrogen atoms adsorbed on Pt(n = 1-4) decorated C48H16 sheet have adsorption energies of ?1.14 eV, ?1.02 eV, ?0.95 eV, and ?1.08 eV, which are greater than the molecular hydrogen adsorption on Pt(n = 1-4) cluster supported C48H16 sheet with lower activation energy of 0.007, 0.109, 0.046, and 0.081 eV respectively. To enhance the dissociative hydrogen adsorption energy, positive and negative external electric fields are applied in the charge transfer direction. Increasing the positive electric field makes H–H bond elongation and good adsorption, whereas increasing the negative electric field results H–H bond contraction and poor adsorption. Thus, by applying a sufficient electric field, the H2 adsorption and desorption processes are can be easily tailored.  相似文献   

2.
Copper(II)phthalocyanine-incorporated metal organic framework (CuPc/MOF) composite material was synthesized for application as an electrocatalyst for hydrogen evolution reaction (HER). The composite exhibited excellent electroactivity compared to the unmodified MOF, as confirmed by the diffusion coefficients (D) values of 3.89 × 10−7 and 1.57 × 10−6 cm2 s−1 for MOF and CuPc/MOF, respectively. The D values were determined from cyclic voltammetry (CV) experiments performed in 0.1 mol L−1 tetrabutylammonium perchlorate/dimethyl sulfoxide (TBAP/DMSO) electrolyte. The Tafel slope determined from the CV data of CuPc/MOF-catalysed HER for 0.450 mol L−1 H2SO4, was 176.2 mV dec−1, which was higher than that of the unmodified MOF (158.3 mV dec−1). The charge transfer coefficients of MOF and CuPc/MOF were close to 0.5, signifying the occurrence of a Volmer reaction involving either the Heyrovsky or the Tafel mechanism for hydrogen generation. For both MOF and CuPc/MOF, the exchange current density (i0) improved with increase in the concentration of the hydrogen source (i.e. 0.033–0.45 mol L−1 H2SO4) Nonetheless, the CuPc/MOF composite had a higher i0 value compared with the unmodified MOF. Thus CuPc/MOF has promise as an efficient electrocatalyst for HER.  相似文献   

3.
Using ab initio based quantum chemical calculations, we have studied the structure, stability and hydrogen adsorption properties of different boron hydrides decorated with lithium, examples of the corresponding anions being dihydrodiborate dianion, B2H22− and tetrahydrodiborate dianion, B2H42− which can be considered to be analogues and isoelectronic to acetylene (C2H2) and ethelene (C2H4) respectively. It is shown that there exists a B-B double bond in B2H4Li2 and a B-B triple bond in B2H2Li2. In both the complexes, the lithium sites are found to be cationic in nature and the calculated lithium ion binding energies are found to be very high. The cationic sites in these complexes are found to interact with molecular hydrogen through ion-quadrupole and ion-induced dipole interactions. In both the complexes, each lithium site is found to bind a maximum of three hydrogen molecules which corresponds to a gravimetric density of ∼23 wt% in B2H4Li2 and ∼24 wt% in B2H2Li2. We have also studied the hydrogen adsorption in a model one-dimensional nanowire with C6H4B2Li2 as the repeating unit and found that it can adsorb hydrogen to the extent 9.68 wt% and the adsorption energy is found to be −2.34 kcal/mol per molecular hydrogen.  相似文献   

4.
First-Principles study based on Density functional theory (DFT) calculations are employed to investigate the dissociative mechanism of H2S adsorption and its dissociation on perfect, and sulfur covered Ni(110) surface. On both surfaces, we probe the site preference for H2S, HS, H, and S adsorption mechanisms. The results indicate that H2S is energetically adsorbed on their high symmetry adsorption sites with the preferred short-bridge (SB) site on both surfaces. Furthermore, we found that chemisorption of HS is stronger in contrast to H2S at favorable short-bridge (SB) with a binding energy of −3.59 eV on perfect Ni(110) surface, and on S-covered Ni(110) surface at the favorable hollow site having a binding energy of −3.57 eV. In the first H2S dehydrogenation, energy barriers for S–H bond breaking over the clean surface are 0.08–0.46 eV and a little bit higher on the S-covered surface are 0.1–0.78 eV, while in second dehydrogenation the energy barrier on a clean surface is 0.19 eV. For further detail, electronic densities of states and d-band center model are used to characterize the interaction of adsorbed H2S with both surfaces. Hence, our results show that decomposition of H2S over perfect and S-covered Ni(110) surface is exothermic and also an easy process. However, kinetically and thermodynamically, the subsistence of surface sulfur avoids the H–S bond breaking process.  相似文献   

5.
The dihydrogen storage capacity of ScxNy (x + y = 4) compounds have been theoretically investigated at different levels. At B3LYP-D3/6-311G(3df,3pd) level, ScN3 has multiple isomers with similar energies, which is an interference of hydrogen storage research. Sc2N2 and Sc3N has four and three isomers, respectively. For both systems, the lowest-lying isomers are planar Sc2N2 01 and Sc3N 01, which are energetically much low-lying by at least 20 kcal/mol than the other isomers, respectively. Sc3N 01 can adsorb 8H2 with gravimetric uptake capacity of 9.77 wt %. It satisfies the target specified by US DOE, however, some hydrogen molecules will dissociate and bond atomically on scandium atoms. The strong binding energy (0.66 eV/H2) exceeds the reversible adsorption range (0.1–0.4 eV/H2), which will cause high operating temperature to desorb hydrogen during the application process. Sc2N2 01 can adsorb 9H2 in the molecular form. The H2 gravimetric uptake capacity of Sc2N2 01 (9H2) (13.33 wt %) exceeds the target set by US Department of Energy, moreover, its average adsorption energy (0.32 eV/H2) is in the reversible adsorption range. The interaction of Sc2N2 01 with H2 molecules is considered by means of the bond critical points (bcp) in the quantum theory of atoms in molecules (QTAIM). The Gibbs free energy corrected adsorption energy points that the adsorption of Sc2N2 01(9H2) is energetically favorable below 240 K. Therefore, in ScxNy (x + y = 4), the planar compound Sc2N2 01 is more suitable to be a dihydrogen adsorption material.  相似文献   

6.
By using first-principles methods, we perform a theoretical investigation of adsorption of hydrogen molecules between bilayer solid matrix layers (bilayer boron nitride sheets (BBN) and graphene/boron nitride heterobilayers (GBN)) with variable interlayer distance (ILD). We find that the H2 adsorption energy has a minimum by expanding the interlayer spacing, along with further interlayer expansion, arising from many H2 binding states and electrostatic interaction induced by the polar nature of B–N bonds. To determine if successive addition of H2 molecules is indeed possible using the minimal H2 adsorption energy as the reference state, we then simulate the hydrogen storage capacity of BBN and GBN with different stacking types, and find that the GBN with Bernal stacking is superior for reversible hydrogen storage. Up to eight H2 molecules can be adsorbed with the average adsorption energy of −0.20 eV/H2, corresponding to ∼7.69 wt % hydrogen uptake.  相似文献   

7.
The hydrogen adsorption behaviour of cup-stacked carbon nanotubes (CSCNTs) decorated with the platinum atom at four positions of the conical graphene layer (CGL) is investigated using density functional theory. The optimization shows that the inside lower edge position (IL) results have the best hydrogen adsorption parameters among the four positions. The Pt–H2 distance is 1.54 Å, the H–H bond length (lH-H) is 1.942 Å, and the hydrogen adsorption energy (Eads) is 1.51 eV. The hydrogen adsorption of CSCNTs decorated by Pt at the IL position also has larger Eads and lH-H than the Pt-doped planar graphene, Pt-doped single-wall carbon nanotubes and Pt-doped carbon nanocones. The Pt atom at the IL position has a more significant polarization effect on the adsorbed H2, it has trends to convert H2 into two separate H atoms. While the hydrogen adsorption behaviour at other positions belongs to the Kubas coordination, the lH-H and the Eads increased not significantly.  相似文献   

8.
In the ever growing demand of future energy resources, hydrogen production reaction has attracted much attention among the scientific community. In this work, we have investigated the hydrogen evolution reaction (HER) activity on an open-shell polyaromatic hydrocarbon (PAH), graphene quantum dot “triangulene” using first principles based density functional theory (DFT) by means of adsorption mechanism and electronic density of states calculations. The free energy calculated from the adsorption energy for graphene quantum dot (GQD) later guides us to foresee the best suitable catalyst among quantum dots. Triangulene provides better HER with hydrogen placed at top site with the adsorption energy as −0.264 eV. Further, we have studied platinum decorated triangulene for hydrogen storage. Three different sites on triangulene were considered for platinum atom adsorption namely top site of carbon (C) atom, hollow site of the hexagon carbon ring near triangulene's unpaired electron and bridge site over C–C bond. It is found that the platinum atom is more stable on the hollow site than top and bridge site. We have calculated the density of states (DOS), highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO) and HOMO-LUMO gap of hydrogen molecule adsorbed platinum decorated triangulene. Our results show that the hydrogen molecule (H2) dissociates instinctively on all three considered sites of platinum decorated triangulene resulting in D-mode. The fundamental understanding of adsorption mechanism along with analyses of electronic properties will be important for further spillover mechanism and synthesis of high-performance GQD for H2 storage applications.  相似文献   

9.
Plumbene, a recently discovered 2D material, has been examined for hydrogen storage. First principles calculations have been performed to investigate the hydrogen adsorption on pristine plumbene monolayer. The hydrogen molecule prefers to adsorb on three adsorption sites, i.e. H (hollow-site), T (top-site) and B (bond-site), of plumbene surface with desired adsorption energy. The adsorption energy is highest (−149 meV) at hollow site and lowest (−104 meV) at bond site. One side hydrogen decorated plumbene exhibit 3.37 wt% Hydrogen Gravimetric Density (HGD). Whereas 6.74 wt% (HGD), with the average adsorption energy of −117 meV/H2, has been achieved in both side hydrogen decorated plumbene monolayer. Applied electric field can effectively controls the adsorption and desorption processes. Positive electric field makes the adsorption strong while the negative electric field results in weakening of hydrogen adsorption. It means electric field act as a switch to store and release hydrogen with good control and usage selectivity. Present study reveals that the plumbene is a strong candidate for hydrogen storage to meet the desired target of HGD suggested by U.S. Department of Energy by the year 2021.  相似文献   

10.
Different sites for K adsorption in γ-graphyne were investigated using density functional theory (DFT) calculations and optical and structural properties of the structures were examined. For the most stable structures, we put one H2 molecule in different directions on the various sites to evaluate the hydrogen adsorption capability of them. Then, one to nine H2 molecules in sequence were added to the best structure. Results show that clustering of the K atoms is hindered on the graphyne surface and the most desirable adsorption site for K atom is the hollow site of 12-membered ring with adsorption energy of 5.86 eV. Also, this site is the best site for H2 adsorption onto K-decorated graphyne with Edas of −0.212 eV. Adding of number of H2 molecule on this site shows that K atom can bind nine H2 molecules at one side of the graphyne with the average adsorption energy of 0.204 eV/H2. Therefore, for one side ca. 8.95 wt % and for both sides of the graphyne with a K atom in each side ca. 13.95 wt % of the hydrogen storage capacity can be achieved. This study shows that K-decorated graphyne can be a promising candidate for the hydrogen storage applications.  相似文献   

11.
The effect of functional groups (O, F, or OH) on the hydrogen storage properties of Ti2X (X = C or N) monolayer was systematically investigated by first-principles calculations. The results show that the reversible hydrogen storage capacity of Ti2X(OH)2 monolayer is approximately 2.7 wt%, which is larger than that of Ti2XO2 and Ti2XF2 monolayers. The binding energy of the OH group at the F site is stronger than H atom. Thus, H2 molecules will not be dissociated on Ti2X(OH)2 monolayer. At this time, the loss of 1.8 wt% hydrogen storage capacity is not produced in Ti2X(OH)2 monolayer. Furthermore, the PDOS, the population analysis, and the electron density difference explore that electron transfer appears between Ti and the second layer H2 molecules on Ti2X(OH)2 monolayer, and a Dewar-Kubas interaction lies between second layer H2 molecules and Ti2X(OH)2 monolayer. For Ti2X(OH)2 monolayer, the molecular dynamic simulation indicates that the H2 molecules by Dewar-Kubas interaction sable adsorption at 300 K, and desorption at 400 K. Therefore, Ti2X(OH)2 is appropriate for reversible hydrogen sorbent storage materials under ambient conditions.  相似文献   

12.
Prevention of hydrogen (H) penetration into passive films and steels plays a vital role in lowering hydrogen damage. This work reports effects of atom (Al, Cr, or Ni) doping on hydrogen adsorption on the α-Fe2O3 (001) thin films and permeation into the films based on density functional theory. We found that the H2 molecule prefers to dissociate on the surface of pure α-Fe2O3 thin film with adsorption energy of −1.18 eV. Doping Al or Cr atoms in the subsurface of α-Fe2O3 (001) films can reduce the adsorption energy by 0.03 eV (Al) or 0.09 eV (Cr) for H surface adsorption. In contrast, Ni doping substantially enhances the H adsorption energy by 1.08 eV. As H permeates into the subsurface of the film, H occupies the octahedral interstitial site and forms chemical bond with an O atom. Comparing with H subsurface absorption in the pure film, the absorption energy decreases by 0.01–0.22 eV for the Al- and Cr-doped films, whereas increases by 0.82–0.96 eV for the Ni-doped film. These results suggest that doping Al or Cr prevents H adsorption on the surface or permeation into the passive film, which effectively reduces the possibility of hydrogen embrittlement of the underlying steel.  相似文献   

13.
The potential hydrogen storage performance of the constructed Y-decorated MoS2 was investigated via first-principles density functional theory (DFT) calculations. The Y could be stably decorated on the MoS2 monolayer with adsorption energy being ?4.82 eV, the absolute value of which was higher than the cohesive energy of bulk Y. The introduced H2 interacted strongly with the Y-decorated MoS2 with an elongated bond length and reasonable adsorption energy being 0.792 Å and ?0.904 eV, respectively. There would be four H2 in maximum adsorbed and stored on the Y-decorated MoS2 with average adsorption energy being ?0.387 eV. Moreover, the hydrogen gravimetric capacity of the MoS2 with full Y coverage on each side could be improved to be 4.56 wt% with average adsorption energy being ?0.295 eV. Our study revealed that the MoS2 decorated with Y could be a potential material to effectively store H2 with promising gravimetric density.  相似文献   

14.
Adsorption and dissociation properties of hydrogen on Ni-adsorbed and -substituted Mg17Al12 (100) surface are investigated systematically by means of the density functional theory calculations. Results show that one Ni atom prefers to adsorb on MgMg bridge site of the surface with adsorption energy −4.90 eV. For substitution systems, the Mg17Al12 (100) surface doped with 3.94 wt% and 7.69 wt% of Ni are considered. It is obtained that Ni atoms tend to replace Mg atoms occupied at the subsurfaces. With the addition of Ni, the energy of atomic (molecular) hydrogen adsorption (dissociation) on the Mg17Al12 (100) surface are significantly improved. The dissociation of H2 on the Ni-adsorbed surface is spontaneous. The mechanisms analyses based on the density functional theory are in line with the experimental results.  相似文献   

15.
The mechanism of hydrogen molecule adsorption on 2D buckled bismuthene (b-Bi) monolayer decorated with alkali metal atoms was studied using density functional theory based first principles calculations. The decorated atoms Li, Na and K exhibited distribution on surface of b-Bi monolayer with increasing binding energy of 2.6 eV, 2.9 eV and 3.6 eV respectively. The adsorption of H2 molecule on the slabs appeared stable which was further improved upon inclusion of van der Waals interactions. The adsorption behaviour of H2 molecules on the decorated slabs is physisorption whereas the slabs were able to bind up to five H2 molecules. The average adsorption energy per H2 molecules are in range of 0.1–0.2 eV which is good for practical applications. The molecular dynamics simulation also confirmed the thermodynamic stabilities of five H2 molecules adsorbed on the decorated slabs. The storage capacity values are found 2.24 wt %, 2.1 wt %, and 2 wt %, for respective cases of Li, Na and K atoms decorated b-Bi. The analysis of the adsorbed cases pointed to electrostatic interaction of Li and H2 molecule. The adsorption energies, binding energies, charge analysis, structural stability, density of states, and hydrogen adsorption percentage specifies that the decorated b-Bi may serve as an efficient hydrogen storage material and could be an effective medium to interact with hydrogen molecules at room temperature.  相似文献   

16.
Hydrogen storage capacity has been investigated on a copper-based metal organic framework named HKUST-1 with fine structural analyses. The crystalline structure of HKUST-1 MOF has been confirmed from the powder X-ray diffraction and the average particle diameter has been found about 15–20 μm identified by FE-SEM. Nitrogen adsorption isotherms show that HKUST-1 MOF has approximately type-I isotherm with a BET specific surface area of 1055 m2g−1. Hydrogen adsorption study shows that this material can store 0.47 wt.% of H2 at 303 K and 35 bar. The existence of Cu (II) in crystalline framework of HKUST-1 MOF has been confirmed by pre-edge XANES spectra. The sharp feature at 8985.8 eV in XANES spectra represents the dipole-allowed electron transition from 1s to 4pxy. In addition, EXAFS spectra indicate that HKUST-1 MOF structure has the Cu–O bond distance of 1.95 Å with a coordination number of 4.2.  相似文献   

17.
The feasibility to store hydrogen in calcium-decorated metal organic frameworks (MOFs) is explored by using first-principles electronic structure calculations. We show that substitution of boron atoms into the benzene ring of the MOF linker substantially enhances the Ca binding energy to the linker as well as the H2 binding energy to Ca. The Kubas interaction between H2 molecules and Ca added in the MOF gives rise to a large number of bound H2's (8H2's per linker) with the binding energy of 20 kJ/mol, which makes the system suitable for reversible hydrogen storage under ambient conditions.  相似文献   

18.
The effect of oxygen, hydrogen, and (oxygen + hydrogen) molecules adsorption on the structural and electrical properties of (8,0) carbon nanotube (CNT) are investigated through density functional theory. The obtained results indicate endothermical chemisorption of O2 on the nanotube surface with a large binding energy of about 598 meV and a significant charge transfer of about 0.43 e per molecule. It is discussed that the O2 chemisorption creates hole carries in the (8,0) carbon nanotube and thus increases the work function of the system. In the case of hydrogen molecule, a weak physisorption on the surface of CNT (∼−5 meV) is identified. The adsorption of H2 on CNT is also accompanied by hole doping and increment of the work function of the CNT, while the charge transfer between CNT and H2 is negligible. The band offsets in the H2-CNT junction are calculated to examine and describe the observed hole doping in this system. The effect of oxygenation of CNT on hydrogen adsorption is also investigated and the most favorable adsorption configuration is found and the related adsorption energy is calculated. It is argued that the oxygenation of CNT enhances the physisorption of hydrogen molecules. It is shown that hydrogen molecule adsorption on the oxidized CNT cancels hole doping and hence decreases the work function of the system.  相似文献   

19.
In this study, using the first principles calculation and analysis, we found that the B-doping in double-vacancy defective graphene could effectively increase the binding energy of Ti atoms in each adsorption site, especially in the H2 adsorption site with a maximum binding energy of 8.3 eV. However, N-doped bilayer graphene (N-BLG) reduced the binding energy of Ti atoms by 88% of the adsorption sites. Given these two findings, a B- and N-doped bilayer double-vacancy-defective graphene (Ti-BDVG(Ti)-Ti) was constructed. Our findings also showed that the Ti-BDVG(Ti)-Ti outer surface and inner surface could adsorb 32 and 12H2 molecules, respectively, of which 22, 20 and 2H2 molecules are adsorbed by Kubas, electrostatic interactions and chemisorption, respectively. The hydrogen storage mechanism of Ti-BDVG(Ti)-Ti involves multiple adsorption modes, and this hydrogen storage mechanism provides a theoretical basis for the rational design of hydrogen storage materials with maximum effective hydrogen storage capacity.  相似文献   

20.
Using a deposition-reduction method, Mg/MOF nanocomposites were prepared as composites of Mg and metal-organic framework materials (MOFs = ZIF-8, ZIF-67 and MOF-74). The addition of MOFs can enhance the hydrogen storage properties of Mg. For example, within 5000 s, 0.6 wt%, 1.2 wt%, 2.7 wt%, 3.7 wt% of hydrogen were released from Mg, Mg/MOF-74, Mg/ZIF-8, Mg/ZIF-67, respectively. Activation energy values of 198.9 kJ mol−1 H2, 161.7 kJ mol−1 H2, 192.1 kJ mol−1 H2 were determined for the Mg/ZIF-8, Mg/ZIF-67, Mg/MOF-74 hydrides, which are 6 kJ mol−1 H2, 43.2 kJ mol−1 H2, and 12.8 kJ mol−1 H2 lower than that of Mg hydride, respectively. Moreover, the cyclic stability characterizing Mg hydride was significantly improved when adding ZIF-67. The hydrogen storage capacity of the Mg/ZIF-67 nanocomposite remained unchanged, even after 100 cycles of hydrogenation/dehydrogenation. This excellent cyclic stability may have resulted from the core-shell structure of the Mg/ZIF-67 nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号