首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
红花菜豆凝集素的荧光光谱学研究   总被引:5,自引:0,他引:5  
利用荧光光谱方法研究了红花菜豆凝集素,结果表明PCL分子各亚基中的两外色氨酸残基分别位于PCL分子表面和分子内,标记了DNS的PCL荧光偏振研究指出,致使PCL在10mmol/L SDS条件下失活的主要原因可能是亚基解离。荧光偏振研究还表明,甲状腺球蛋白、甘露聚糖,海参多糖硫酸酯可与PCL结合,荧光探针bis-ANS与PCL的结合可引起明显的荧光增强和发射谱蓝移,表明PCL分子中存有疏水区域,结合  相似文献   

2.
牛肝L-谷氨酸脱氢酶在压力下的解离   总被引:2,自引:0,他引:2  
运用荧光光谱方法研究了牛肝L-谷氨酸脱氢酶(GDH)在压力下的解离。研究表明,在2kbar时GDH由六聚体解离成亚基,标准解离体积变化为-293ml/mol,解离自由能为48kcal/mol(10℃)。GDH在压力下的解离还显示出异常的浓度依赖性,表明在天然寡聚蛋白的布居中存在着自由能不同的单体聚合。不同温度下的GDH解离研究结果表明,由亚基-六聚体的聚合是一熵增驱动过程。bis-ANS存在时观察到的现象,暗示谷氨酸脱氢酶的亚基解离过程中发生了构象漂移(conformationaldrift)。此外还研究了底物结合对解离的影响  相似文献   

3.
用各种化学试剂修饰红花菜豆(Phaseoluscoccineusvarrubronanus,Berry)凝集素(简称PCL)分子,测定与其活性相关的氨基酸残基.经NBS修饰表明PCL具有8个Trp残基,其中4个暴露于分子表面,此4个Trp残基被修饰后,PCL的凝血活性完全丧失.比较PCL修饰前后的CD光谱表明修饰不改变其二级结构。修饰Tyr,Arg,His残基和游离氨基及羧基不影响PCL的血凝活性.巯基也不是血凝活性所必需,但是PCL分子中的二硫键被还原,或被CNBr分解为两个片断则使蛋白质丧失血凝活性,提示分子的完整结构对PCL的血凝活力是重要的  相似文献   

4.
用化学修饰、内源荧光和荧光淬灭等方法研究了油麻藤凝集素(MSL)的溶液构象变化和微环境的构象特征。研究发现MSL分子中总共有9个色氨酸(Trp)残基,它们的荧光能被丙烯酰胺淬灭,但不易为KI接近而淬灭,MSL经N-溴代琥珀酰亚胺(NBS)修饰后,其内源性荧光发射谱发生相应变化,结果表明MSL分子中部分Trp残基埋藏于分子内部,而位于分子表面的Trp残基可能处于分子的疏水袋中。  相似文献   

5.
油麻藤凝集素的荧光光谱研究   总被引:2,自引:0,他引:2  
用化学修饰,内源荧光和荧光淬灭等方法研究了油麻藤集素(MSL)的溶液的象变化和微环境的构象特征,研究发现MSL分子中总共有9个色氨酸(Trp)残基,它们的荧光能被丙烯酰胺淬灭,但不易为KI接近而淬灭,MSL经N-溴化琥珀酰亚胺(NBS)修饰后,其内源性荧光发射谱发生相应变化,结果表明MSL分子中部分Trp残基埋藏于分子内部,而位于分子表面的Trp残基可能处于分子的疏水袋中。  相似文献   

6.
野花生豆凝集素的化学修饰与荧光光谱研究   总被引:4,自引:0,他引:4  
野花生豆凝集素(CML)经Sephadex G-200测得分子量为103.O kD。用对二甲基氨基苯甲醛(DAB)为显色剂,测得每个CML分子含有5.9个色氨酸残基。在pH5.1,含8mol/L脲的醋酸缓冲中,N-溴代丁二酰亚胺(NBS)可修饰CML分子中的5.6个色氨酸(Trp)残基,同时使CML的凝血活性完全丧失。用焦碳酸二乙酯(DEPC)和N-乙酰顺丁烯酰胺(NEM)分别修饰CML的组氨酸残  相似文献   

7.
胰蛋白酶与ANS的相互作用   总被引:7,自引:0,他引:7  
利用荧光光谱法研究了在不同pH、压力及不同浓度的脲作用时荧光探针1,8-ANS(1-anilionnaphthalene-8-sulfonicacid)与胰蛋白酶的相互作用.发现在低pH时ANS可以结合到胰蛋白酶上,其中以pH2.0、3.0时结合最强.进一步的研究发现脲变性对胰蛋白酶结合ANS的能力有很大的影响:1.5mol/L的脲即可使得胰蛋白酶结合ANS的能力大大降低,但有趣的是即使高达4mol/L的脲对胰蛋白酶色氨酸残基荧光也无明显影响.另外,在pH猝变、脲变性、及逐渐改变压力时,胰蛋白酶色氨酸残基荧光和结合到胰蛋白酶分子上的ANS的荧光的变化大不相同.上述结果暗示胰蛋白酶的色氨酸残基所在的区域和其结合ANS的区域是两个不相同的区域.  相似文献   

8.
野花生豆凝集素(CML)经SephadexG-200测得分子量为103.OkD.用对二甲基氨基苯甲醛(DAB)为显色剂,测得每个CML分子含有5.9个色氨酸残基.在pH5.1,含8mol/L脲的醋酸缓冲液中,N-溴代丁二酰亚胺(NBS)可修饰CML分子中的5.6个色氨酸(Trp)残基,同时使CML的凝血活性完全丧失.用焦碳酸二乙酯(DEPC)和N-乙酰顺丁烯酰胺(NEM)分别修饰CML的组氨酸残基和半胱氨酸巯基后,CML的活性均无变化.CML在天然状态下荧光发射峰位于336nm处,用CML的专一性抑制糖N-乙酰半乳糖胺研究色氨酸的微环境,发现N-乙酰半乳糖胺可以淬灭CML中88%的色氨酸残基萤光,Stern-Volmer常数K=1.73L/mol.同时发现N-乙酰半乳糖胺能够保护CML,避免NBS对CML的修饰作用,表明色氨酸可能是CML维待活性所必需,并直接参与和专一性抑制糖的结合,其微环境较为疏水.  相似文献   

9.
Zhao XY  Jiang ZY  Peng JZ 《生理学报》2000,52(6):473-478
在麻醉大鼠侧脑室注射左旋一叶Qiu碱(L-Sec),记录动脉血压(AP)、心率(HR)及肾交感神经放电(RSND),观察前脑室周系统GABA能紧张性活动改变引起的心血管效应。结果如下:(1)L-Sec可引起RSND增加、AP升高和HR加快,并呈一定剂量-效应关系;但L-S盈余 于bicuculline(Bic)。(2)L-Sec既能拮抗muscimol(Mus),又能拮抗baclofen(Bac)  相似文献   

10.
钙离子对江浙蝮蛇蛇毒中性磷脂酶A2溶液构象的研究   总被引:2,自引:0,他引:2  
用荧光光谱方法研究了钙离子对江浙蝮蛇毒中性磷脂酶A2(简称NPLA2)构象的影响。结果表明,Ca2+能使酶中唯一的色氨酸残基的荧光增强:只有在Ca2+存在时,底物卵磷脂才明显改变酶分子中Trp周围的环境,使其光谱的兰移达7nm,荧光增强约一倍:酶中唯一的His残基被修饰以后,则没有上述两种现象发生;结合在NPLA2上的bisANS的荧光强度,随Ca2+浓度的增加而增强,提示Ca2+对bis-ANS结合区域的构象有明显影响。  相似文献   

11.
L C Yeh  P M Horowitz  J C Lee 《Biochimie》1992,74(11):1025-1030
The yeast ribosomal protein L1a contains two tryptophan residues located at positions 95 and 183. Spectrofluorometric analysis showed that the average tryptophan environment is moderately polar. Quenching studies of the yeast 5S rRNA-L1a protein complex (RNP) with acrylamide and iodide revealed tryptophan heterogeneity. The two tryptophan residues are located in the non-RNA-binding region of the L1a molecule. However, dissociation of the yeast 5S rRNA-L1a protein RNP complex to its components resulted in a decline of tryptophan fluorescence. The observation implied that the environment of the tryptophan-containing L1a regions which were not known to be involved in RNA binding was influenced by association with the 5S rRNA molecule.  相似文献   

12.
Spectrofluorimetric studies on C-terminal 34 kDa fragment of caldesmon   总被引:1,自引:0,他引:1  
Analysis of the tryptophan fluorescence emission spectra of caldesmon and its 34 kDa C-terminal fragment indicates that all tryptophan residues are located on the surface of the molecule, accessible to solvent. All three tryptophan residues of the 34 kDa fragment and four of the five tryptophan residues of intact protein are accessible to free water, whereas one located in the N-terminal region of molecule is accessible only to bound water molecules. The temperature dependence of the fluorescence parameters indicates higher thermal stability of the 34 kDa fragment than the whole caldesmon molecule. The interaction of the 34 kDa fragment of caldesmon (like that of the intact molecule) with calmodulin is accompanied by a blue shift of the fluorescence emission maximum and an increase in the relative quantum yield. Computer-calculated binding constants show that the binding of calmodulin to the 34 kDa fragment (K = 2.5 x 10(5) M-1) is of two orders of magnitude weaker than that to intact caldesmon (K = 1.4 x 10(7) M-1). The interaction with tropomyosin results in a blue shift of the spectrum of the 34 kDa fragment, yet there is no effect on the spectrum of intact caldesmon. Binding constants of tropomyosin to caldesmon (K = 3.8 x 10(5) M-1) and its 34 kDa fragment (K = 2.3 x 10(5) M-1) are similar. Binding of calmodulin to caldesmon and to the 34 kDa fragment affects their interaction with tropomyosin.  相似文献   

13.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

14.
Circular dichroism and tryptophan fluorescence spectroscopy have been used to investigate the structures of the influenza virus membrane glycoprotein hemagglutinin, acid-treated hemagglutinin, and fragments of hemagglutinin derived by proteolysis. The conformational change in hemagglutinin which occurs at the pH of membrane fusion (pH 5-6) was associated with a significant change of the environment of tyrosine residues, a change in the environment of tryptophan residues, but no changes in secondary structure. Tryptic digestion of the hemagglutinin in its low pH conformation which releases one of the subunit polypeptides (HA1) caused minimal changes in tyrosine and tryptophan environments but a small secondary structural change in HA1. The secondary structure of the remainder of the molecule (HA2) was very similar to that predicted from the known x-ray crystallographic structure of the native molecule. However, fluorescence spectroscopy indicated a tertiary change in structure in the coiled coil of alpha-helices which form the fibrous central stem of the molecule. These results are consistent with a conformational change required for membrane fusion which involves a decrease of HA1/HA1, HA1/HA2 interactions and changes in tertiary structure not accompanied by changes in secondary structure.  相似文献   

15.
To elucidate the details of pH-induced conformational transformation of ricin [I] in the region surrounding tryptophan residues, we studied parameters of fluorescence of the native toxin and its isolated A- and B-subunits at pH 4.0, 5.0 and 7.4. The studies were carried out using resolution of fluorescence spectra according to different degree of tryptophan accessibility to ionic (iodide) and non-ionic organic (acrylamide) quenchers. Application of the new method allowed to reveal three classes of tryptophan residues differing in their accessibility to quenchers alpha-residues are accessible neither to ions nor to organic molecules; beta-residues are accessible only to organic molecules; while surface gamma-residues are accessible to both types of quenchers. The fluorescence spectra were assessed for each class of tryptophan residues. The major part of them was shown to be localized in apolar rigid microenvironment. Fluorescence of ricin and especially of its isolated subunits proved to be strongly dependent on the pH value. At pH less than 5 the structure of B-chain loosens, this process being reflected by an increase in accessibility of tryptophan residues to quenchers. In acidic solution at least one out of seven tryptophan residues in the ricin molecule undergoes conformational transformation. Positive charge prevails in the regions surrounding quencher-accessible tryptophan residues. Binding of lactose leads to a slight compactization of the toxin structure that causes, in its turn, short-wave shifts of the fluorescence spectra and reduction of Stern-Volmer constants for intraglobular tryptophan residues.  相似文献   

16.
The pressure denaturation of trypsin from bovine pancreas was investigated by fluorescence spectroscopy in the pressure range 0. 1-700 MPa and by FTIR spectroscopy up to 1000 MPa. The tryptophan fluorescence measurements indicated that at pH 3.0 and 0 degrees C the pressure denaturation of trypsin is reversible but with a large hysteresis in the renaturation profile. The standard volume changes upon denaturation and renaturation are -78 mL.mol-1 and +73 mL.mol-1, respectively. However, the free energy calculated from the data in the compression and decompression directions are quite different in absolute values with + 36.6 kJ.mol-1 for the denaturation and -5 kJ. mol-1 for the renaturation. For the pressure denaturation at pH 7.3 the tryptophan fluorescence measurement and enzymatic activity assays indicated that the pressure denaturation of trypsin is irreversible. Interestingly, the study on 8-anilinonaphthalene-1-sulfonate (ANS) binding to trypsin under pressure leads to the opposite conclusion that the denaturation is reversible. FTIR spectroscopy was used to follow the changes in secondary structure. The pressure stability data found by fluorescence measurements are confirmed but the denaturation was irreversible at low and high pH in the FTIR investigation. These findings confirm that the trypsin molecule has two domains: one is related to the enzyme active site and the tryptophan residues; the other is related to the ANS binding. This is in agreement with the study on urea unfolding of trypsin and the knowledge of the molecular structure of trypsin.  相似文献   

17.
The quenching of tryptophan fluorescence by N-bromosuccinamide, studied by the fluorescence stopped-flow technique, was used to compare the reactivities of tryptophan residues in protein molecules. The reaction of N-bromosuccinamide with the indole group of N-acetyltryptophanamide, a model compound for bound tryptophan, followed second-order kinetics with a rate constant of (7.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1 at 23 degrees C. The rate does not depend on ionic strength or on the pH near neutrality. The non-fluorescent intermediate formed from N-acetyltryptophanamide on the reaction with N-bromosuccinamide appears to be a bromohydrin compound. The second-order rate constant for fluorescence quenching of tryptophan in Gly-Trp-Gly by N-bromosuccinamide was very similar, (8.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1. Apocytochrome c has the conformation of a random coil with the single tryptophan largely exposed to the solvent. The rate constant for the fluorescence quenching of the tryptophan in apocytochrome c by N-bromosuccinamide was (3.7 +/- 0.3) . 10(5) dm3 . mol-1 . s-1. The fluorescence quenching by N-bromosuccinamide of the tryptophan residues incorporated in alpha-chymotrypsin at pH 7.0 showed three exponential terms from which the following rate constants were derived: 1.74 . 10(5), 0.56 . 10(5) and 0.11 . 10(5) dm3 . mol-1 . s-1. This protein is known to have eight tryptophan residues in the native state, six residues at the surface, and two buried. Three of the surface tryptophans have the indole rings protruding out of the molecule and may account for the fastest kinetic phase of the quenching process. The intermediate phase may be due to three surface tryptophans whose indole rings point inwards, and the slowest to the two interior tryptophan residues.  相似文献   

18.
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydrate-binding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号