首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
采用表面活性剂强化电动修复石油污染土壤,通过分析石油烃及其组分的变化特征,探讨了表面活性剂强化作用下污染物的去除机制.结果表明,单一电动修复处理(EK)下土壤总石油烃(TPH)的平均去除率为12.50%,用十二烷基苯磺酸钠(SDBS)和聚氧乙烯月桂醚(Brij35)及其混合溶液(SDBS/Brij35)作为电解液强化电...  相似文献   

2.
采用截留分子量(MWCO)为5000 Dalton、1000 Dalton的聚砜超滤膜,MWCO为1 kDa的再生纤维素超滤膜;采用十二烷基苯磺酸钠(SDBS)、曲拉通100(TritonX-100)、吐温80(Tween-80)、烷基多苷(APG)为表面活性剂,用胶团强化超滤工艺去除水中双酚A。研究了不同材质和截留分子量的超滤膜、表面活性剂浓度、膜操作压力、溶液pH和溶液中电解质等因素对该工艺的影响。结果表明,SDBS对双酚A有较好的去除效果,去除率在80%以上。在H+和Na+存在的条件下,双酚A的截留率增加,透过液中SDBS浓度降低。SDBS与非离子表面活性剂的复配可以提高双酚A截留率,降低透过液中SDBS的浓度,复配效果优劣顺序为Tween-80TritonX-100APG。  相似文献   

3.
表面活性剂淋滤对土壤中邻苯二甲酸酯纵向迁移的影响   总被引:1,自引:0,他引:1  
以无表面活性剂的去离子水为对照、设置1倍(1 CMC)和2倍临界胶束浓度(2 CMC)浓度,研究了单一和混合表面活性剂,包括十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX-100)对人工污染土壤中邻苯二甲酸酯(PAEs)纵向迁移的影响,土柱中上层为PAEs污染土(3 cm),下层为清洁土(20 cm)。CTAB和SDBS在2 CMC时、TX-100为1 CMC时可增强污染土中PAEs的纵向迁移,其中DMP和DEP有无表面活性剂均可发生迁移,在相同表面活性剂条件下,延长老化时间对污染土中PAEs的迁移产生一定的影响。CTAB和SDBS在2 CMC时,清洁土中PAEs总含量较低,但TX-100在1 CMC时较低。清洁土中PAEs总含量均随土层深度的增加而降低。当老化时间较短时,土壤有机质对PAEs在清洁土柱的迁移影响较小,老化时间的延长对清洁土中的PAEs迁移影响较大。3种表面活性剂均可有效促进清洁土中DMP和DEP的迁移,CTAB和SDBS在2 CMC、TX-100在1 CMC时可促进DNBP和BBP的迁移,但3种表面活性剂对清洁土中DNOP迁移的影响较小。与单一表面活性剂相比,混合表面活性剂有助于污染土中PAEs的迁移,且随着浓度的升高,清洁土中PAEs的含量呈现降低的趋势。就整个土柱而言,单一表面活性剂CTAB和SDBS在较高浓度时、TX-100较低的浓度时对PAEs的淋滤效果更好;在较短老化时间下,土壤有机质含量的高低对淋滤率没有显著影响;老化时间延长有效降低了淋滤率;而混合表面活性剂的淋滤率有明显提高,更有助于PAEs的迁移。  相似文献   

4.
为考察污染土壤淋洗修复过程中表面活性剂的动态吸附解吸过程及其对淋洗效果影响,以北京潮土为例,采用土柱淋洗实验,对4种浓度(600、1 800、3 000和4 200 mg·L~(-1))的阴离子表面活性剂十二烷基苯磺酸钠(SDBS)淋洗柴油污染土壤的过程进行模拟。结果表明,土柱淋洗过程中北京潮土对SDBS的吸附过程可分3个阶段:快吸附阶段、慢吸附阶段及动态平衡阶段。吸附动力学较好地符合颗粒内扩散方程。SDBS淋洗柴油污染潮土时,初期由于表面活性剂在土壤中的吸附未达到平衡而无法在溶液中形成胶束,导致淋洗液中柴油浓度很低。此后SDBS在土壤中的吸附逐渐达到平衡状态,溶液中SDBS的浓度超过临界胶束浓度(CMC)开始形成胶束,土壤中残留的柴油开始大量解吸。淋洗液中柴油浓度总体呈先升到峰值,而后呈锯齿状波动下降的变化规律。淋洗到400 h时,4种浓度SDBS溶液对柴油的去除率分别为1.06%、1.52%、25.55%和27.99%,柴油去除率与表面活性剂浓度呈正相关。但表面活性剂浓度过高时,会降低土柱中土壤渗透系数,导致淋洗流量显著降低,采用SDBS淋洗柴油污染潮土时,表面活性剂浓度在3 000~4 200 mg·L~(-1)较佳。  相似文献   

5.
使用吐温80(Tween80)、鼠里糖脂(RL)、十二烷基苯磺酸钠(SDBS)和十二烷基苯硫酸钠(SDS)强化甲基营养型芽孢杆菌(Bacillus methylotrophicus)修复柴油污染土壤,研究了表面活性剂对甲基营养型芽孢杆菌的影响。结果表明:甲基营养型芽孢杆菌可以较好地降解柴油,但由于土壤的吸附,土壤中柴油的修复效率较低,仅为22.68%;因此,需要使用表面活性剂进行强化。浓度为3 000 mg·L~(-1)的SDBS和SDS、2 000 mg·L~(-1)的Tween80、500 mg·L~(-1)的RL具有较好的洗脱效果。微生物毒性实验表明,Tween80和RL对甲基营养型芽孢杆菌具有促进作用,可以用于强化修复柴油污染土壤。2 000 mg·L~(-1)Tween80强化甲基营养型芽孢杆菌修复柴油土壤的修复效果(46.11%)优于500 mg·L~(-1)RL的修复效果(45.32%),同时具有较好的经济性,具有较好的应用前景。  相似文献   

6.
为克服纳米级零价铁(NZVI)在地下环境中的易团聚特性,强化其在地下环境中的迁移性能,选择阴离子表面活性剂十二烷基硫酸钠(SDS)和水溶液2种媒介作为携带NZVI的载体,考察了它在2种媒介中的沉降性能,以及在不同粒径的多孔介质中SDS对NZVI的强化迁移作用。结果表明,NZVI在SDS溶液中的稳定性远远大于在水溶液中的稳定性;SDS溶液的携带作用大大增强了NZVI在各粒径多孔介质中的迁移性,其中在0.10~0.25mm的多孔介质中,这种强化作用表现得尤为突出,NZVI在模拟柱底部2cm的残留率达到58.8%。  相似文献   

7.
湿法净化黑烟中炭黑颗粒物的关键在于降低吸收液的表面张力并以高性能絮凝剂使其从溶液中絮凝、沉降以利于分离。选用十六烷基三甲基溴化胺(CTAB)为主要表面活性剂,使之与十二烷基苯磺酸钠(SDBS)和月桂醇聚氧乙烯(9)醚(AEO-9)进行复配实验,研究了复配液的表面张力,再向最低表面张力的复配表面活性剂溶液中投加絮凝剂聚合氯化铝(PAC)和聚丙烯酰胺(PAM),探讨絮凝剂的添加对黑烟颗粒沉降和絮凝的影响.实验结果表明:同时添加表面活性剂CTAB,SDBS和PAC,并使之浓度分别为0.5 mmol/L,0.4 mmol/L和200 mg/L时,炭黑颗粒的沉降效果最好,沉降率高达94%,且絮凝体较大,沉降时间仅为2 min。  相似文献   

8.
污水处理过程产生的大量剩余污泥具有含水率高、有机物含量高以及富集了多种有毒有害物质的特性,必须进行适当预处理方能进行后续处置与利用。表面活性剂因其独特的两亲结构及表/界面活性近年来逐渐被应用于污泥处理过程。综述了常用表面活性剂对污泥脱水以及厌氧发酵过程的影响,重点对表面活性剂的作用机制进行了总结归纳:在污泥脱水过程中,表面活性剂主要发挥增溶作用;在污泥厌氧发酵产酸过程中,表面活性剂的增溶作用以及对微生物活性的改变共同影响产酸效果。最后对表面活性剂应用于污泥处理中的研究前景进行了展望。  相似文献   

9.
实验研究了重金属Cd在生物表面活性剂鼠李糖脂协助下的电动修复过程,通过不同方式、不同浓度、不同酸碱度的鼠李糖脂溶液的添加与空白处理对比,探讨了鼠李糖脂协助下电动修复过程中的Cd在土壤介质中的迁移转化和机理,分析了鼠李糖脂溶液作为电动修复添加剂的可行性。结果表明,中等浓度酸性的鼠李糖脂溶液(pH=4.78,浓度为0.5、1和2 g/L)能对土壤中的重金属Cd进行有效的富集,富集量均在初始值的4倍以上,且其可交换态比重均大于42.07%,非常有利于土壤进行二次修复。此外,以pH=4.78,浓度为0.5 g/L的鼠李糖脂溶液作为预处理剂的Ex-08中的重金属Cd并未出现富集现象,但其对重金属的Cd的总去除效率达到了49.27%。表明利用鼠李糖脂溶液作为电动修复添加剂进行土壤重金属修复是可行的。  相似文献   

10.
以Cd2+为重金属代表,阴离子表面活性剂十二烷基苯磺酸钠(SDBS)、阳离子表面活性剂氯化十六烷基吡啶(CPC)、非离子表面活性剂辛基酚聚氧乙烯醚(TX-100)为表面活性剂代表,用实验模拟法研究了3种类型的表面活性剂对Cd2+在沉积物上吸附行为的影响.结果表明,不同种类的表面活性剂对Cd2+在沉积物上的吸附影响不同,SDBS对Cd2+的吸附影响可分为2个阶段,当SDBS初始质量浓度从0 mg/L增加到2 600 mg/L,Cd2+的吸附量从1.52 mg/g增至1.88 mg/g,增加了23.7%,随着SDBS初始浓度继续增加,Cd2+的吸附量开始下降,当SDBS初始质量浓度增至16 000 mg/L,Cd2+的吸附量降低至0.34 mg/g;CPC主要通过在溶液中电离出CP+,CP+与Cd2+竞争沉积物表面的吸附位从而抑制Cd2+的吸附,当CPC初始质量浓度从0 mg/L增加至16 000 mg/L,Cd2+的吸附量从1.50 mg/g降低至0.52 mg/g;TX-100能轻微抑制Cd2+在沉积物上的吸附,当TX-100初始质量浓度从0 mg/L增加到16 000 mg/L时,Cd2+吸附量从1.52 mg/g减少至1.35 mg/g.  相似文献   

11.
Zhao B  Zhu L  Yang K 《Chemosphere》2006,62(5):772-779
Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.  相似文献   

12.
A common aspect of innovative remediation techniques is that they tend to reduce the interfacial tension between the aqueous and non-aqueous phase liquids, resulting in mobilization of the organic contaminant. This complicates the remediation of aquifers, contaminated with Dense Non-Aqueous Phase Liquids (DNAPLs), as they are likely to migrate downwards, deeper into the aquifer and into finer layers. A possible solution is the use of swelling alcohols, which tend to reduce the density difference between the aqueous phase and the DNAPL. To avoid premature mobilization upon the initial contact between the DNAPL and the alcohol, several researchers have proposed the use of vertical upward flow of the alcohol. In this paper, we present an equation, which describes the upward mobilization of both continuous and discontinuous DNAPLs and so the important parameters governing the upward controlled mobilization of the DNAPL. The need and required magnitude of this specific discharge was investigated by conducting four column experiments in which the initial density of the DNAPL and the permeability was varied. It was shown that the required flow velocities increase with the permeability of the porous medium and the initial density difference between the aqueous phase and the DNAPL. Whenever the specific discharge falls below the critical value, the DNAPL moves downward. A second set of column experiments looked at the impact of permeability of porous medium on the solubilization and mobilization of DNAPL during alcohol flooding. Columns, packed with coarse or fine sand, containing a residual trichloroethylene (TCE) or perchloroethylene (PCE) saturation were flushed with the alcohol mixture at a fixed specific discharge rate. The induced pressure gradients in the aqueous phase, which were higher in the fine sand, resulted for this porous medium in extensive mobilization of the DNAPL against the direction of the buoyancy force. The density of the first NAPL coming out of the top of the fine sand was close to that of the pure DNAPL. In the coarser sand, the pressure gradients were sufficient to prevent downward migration of the DNAPL, but upward mobilization was minimal. The predominant removal mechanism in this case was the much slower solubilization.  相似文献   

13.
We have conducted well-controlled DNAPL remediation experiments within a 2-D, glass-walled, sand-filled chamber using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Initial conditions for each remediation experiment were created by injecting DNAPL as a point source at the top of the chamber and allowing the DNAPL to migrate downward through a water-filled, heterogeneous, sand-pack designed to be evocative of a fluvial depositional environment. This migration process resulted in the DNAPL residing as a series of descending pools. Lateral advection across the chamber was used to introduce the remedial fluids. Photographs and digital image analysis illustrate interactions between the introduced fluids and the DNAPL. In the surfactant experiments, we found that DNAPL configured in a series of pools was easily mobilized. Extreme reductions in DNAPL/water interfacial tension occurred when using the Aerosol MA surfactant, resulting in mobilization into low permeability regions and thus confounding the remediation process. More modest reductions in interfacial tension occurred when using the Tween 80 surfactant resulting in modest mobilization. In this experiment, capillary forces remained sufficient to exclude DNAPL migration into low permeability regions allowing the excellent solubilizing properties of the surfactant to recover almost 90% of the DNAPL within 8.6 pore volumes. Injection of a potassium permanganate solution resulted in precipitation of MnO2, a reaction product, creating a low-permeability rind surrounding the DNAPL pools. Formation of this rind hindered contact between the permanganate and the DNAPL, limiting the effectiveness of the remediation. From these experiments, we see the value of performing visualization experiments to evaluate the performance of proposed techniques for DNAPL remediation.  相似文献   

14.
Dense non-aqueous phase liquids (DNAPLs) present in the subsurface may contain surface active compounds that impact DNAPL migration and distribution. While a number of studies have revealed the role surface active compounds play in altering the wettability of quartz sand, few have considered the implications for other minerals common to contaminated sites. This study extends understanding of DNAPL/surfactant wettability to iron oxide surfaces. Specifically, quartz and iron oxide-coated sands in a tetrachloroethene (PCE)/water system containing the organic base (an organic molecule that acts as a base) dodecylamine (DDA) were compared at a variety of scales. Wettability of the minerals' surfaces, and the impact of wettability on capillary resistance to DNAPL entry, were assessed as a function of pH through: (i) advancing and receding contact angles, (ii) primary drainage capillary pressure-saturation experiments, and (iii) small, two-dimensional, flow cell experiments. The work revealed that, at neutral pH and under identical boundary capillary pressures, DNAPL invaded quartz sand but not iron oxide-coated sand; however, at low pH, DNAPL invaded both sands equally. These differences were demonstrated to be due to wettability alterations associated with the strength of attractive forces between DDA and the mineral surface, dictated by the isolectric point of the minerals and system pH. Observed differences in DNAPL invasion behavior were consistent with measured intrinsic contact angles and P(c)-S relationships, the latter requiring scaling by the operative contact angle inside the porous medium for a meaningful comparison. This study suggests that the distribution of minerals (and, more specifically, their isoelectric points), as well as the aqueous phase pH at a given site, may have a significant impact on the DNAPL source zone architecture.  相似文献   

15.
The mass transfer rate from residual dense non-aqueous phase liquids (DNAPLs) to the mobile aqueous phase is an important parameter for the efficiency of surfactant-enhanced remediation through solubilization of this type of contamination. The mass transfer kinetics are highly dependent on the dimensionality of the system. In this study, irregularly shaped residual TCE saturations in two-dimensional saturated flow fields were flushed with a 2% polyoxyethylene sorbitan (20) monooleate (POESMO) solution until complete removal had been achieved. A numerical model was developed and used for the simulation of the various surfactant-flushing experiments with different initial saturation patterns and flow rates. Through optimization against in situ concentration and saturation data, a phenomenological power-law model for the relationship between the mass transfer rate from the DNAPL to the mobile aqueous phase on the one hand and the residual DNAPL saturation and the flow velocity on the other hand was derived. The obtained mass transfer rate parameters provide a reasonable fit to the experimental data, predicting the cleanup time and the general saturation and concentration pattern quite well but failing to predict the concentration curves at every individual sampling port. The obtained mass transfer rate model gives smaller values for the predicted mass transfer rate but shows a comparable dependence on water flow and saturation as in earlier published one-dimensional column experiments with identical characteristics for porous medium, DNAPL and surfactant. Mass transfer rate predictions were about one order of magnitude lower in the 2-D flow cell experiment than in 1-D column experiments. These results give an indication for the importance of dimensionality during surfactant remediation.  相似文献   

16.
Even in the absence of mobilization of dense nonaqueous phase liquid (DNAPL), the microemulsion that forms when the surfactant solubilizes a dense contaminant such as trichloroethylene will be more dense than water and tends to migrate downward. This paper addresses the issue of migration with a new concept: surfactant enhanced aquifer remediation at neutral buoyancy. Laboratory results of surfactant remediation in two-dimensional model aquifers show that downward migration of microemulsion containing solubilized dense contaminants can be reduced to an acceptable level, even in the absence of capillary barriers in the aquifer. One model experiment was designed to exhibit a small degree of vertical migration and full capture of the microemulsion at the extraction well. The second experiment was designed to demonstrate the effect of large buoyancy forces that lead to excessive downward migration of the microemulsion. Density measurements of aqueous solutions containing sodium dihexyl sulfosuccinate surfactant, isopropanol, trichloroethylene, and sodium chloride are presented. A companion paper presents the results of the flow and transport calculations needed for this approach to surfactant flooding.  相似文献   

17.
Phase diagrams were used for the formulation of alcohol–surfactant–solvent and to identify the DNAPL (Dense Non Aqueous Phase Liquid) extraction zones. Four potential extraction zones of Mercier DNAPL, a mixture of heavy aliphatics, aromatics and chlorinated hydrocarbons, were identified but only one microemulsion zone showed satisfactory DNAPL recovery in sand columns. More than 90 sand column experiments were performed and demonstrate that: (1) neither surfactant in water, alcohol–surfactant solutions, nor pure solvent can effectively recover Mercier DNAPL and that only alcohol–surfactant–solvent solutions are efficient; (2) adding salts to alcohol–surfactant or to alcohol–surfactant–solvent solutions does not have a beneficial effect on DNAPL recovery; (3) washing solution formulations are site specific and must be modified if the surface properties of the solids (mineralogy) change locally, or if the interfacial behavior of liquids (type of oil) changes; (4) high solvent concentrations in washing solutions increase DNAPL extraction but also increase their cost and decrease their density dramatically; (5) maximum DNAPL recovery is observed with alcohol–surfactant–solvent formulations which correspond to the maximum solubilization in Zone C of the phase diagram; (6) replacing part of surfactant SAS by the alcohol n-butanol increases washing solution efficiency and decreases the density and the cost of solutions; (7) replacing part of n-butanol by the nonionic surfactant HOES decreases DNAPL recovery and increases the cost of solutions; (8) toluene is a better solvent than D-limonene because it increases DNAPL recovery and decreases the cost of solutions; (9) optimal alcohol–surfactant–solvent solutions contain a mixture of solvents in a mass ratio of toluene to D-limonene of one or two. Injection of 1.5 pore volumes of the optimal washing solution of n-butanol–SAS–toluene–D-limonene in water can recover up to 95% of Mercier DNAPL in sand columns. In the first pore volume of the washing solution recovered in the sand column effluent, the DNAPL is in a water-in-oil microemulsion lighter than the excess aqueous phase (Winsor Type II system), which indicates that part of the DNAPL was mobilized. In the next pore volumes, DNAPL is dissolved in a oil-in-water microemulsion phase and is mobilized in an excess oil phase lighter than the microemulsion (Winsor Type I system). The main drawback of this oil extraction process is the high concentration of ingredients necessary for DNAPL dissolution, which makes the process expensive. Because mobilization of oil seems to occur at the washing solution front, an injection strategy must be developed if there is no impermeable limit at the aquifer base. DNAPL recovery in the field could be less than observed in sand columns because of a smaller sweep efficiency related to field sand heterogeneities. The role of each component in the extraction processes in sand column as well as the Winsor system type have to be better defined for modeling purposes. Injection strategies must be developed to recover ingredients of the washing solution that can remain in the soil at the end of the washing process. ©1997 Elsevier Science B.V.  相似文献   

18.
A particular problem with the release of dense nonaqueous phase liquids (DNAPLs) into the environment is identifying where the DNAPL is and if it is still moving. This question is particularly important at sites where thousands of cubic meters of DNAPLs were disposed of. To date, results from laboratory models have not been scaled to predict analogous migration at the larger length and time scales appropriate for sites where large volumes of DNAPLs were released. Modified inspectional analysis is a technique for developing scaling relationships through nondimensionalizing the governing equations. It was applied in this study to scale observations of DNAPL migration in a laboratory model to four hypothetical scenarios in the field where large volumes of DNAPL were released. One scenario was compared to a large DNAPL spill site. The length and time scales of DNAPL movement predicted from our analysis are consistent with those predicted from a numerical model of this site. To our knowledge, this is the first application of modified inspectional analysis for release of DNAPLs in a laboratory model. This methodology may prove useful for scaling results from other laboratory investigations of DNAPL migration to field-scale systems.  相似文献   

19.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

20.

In this study, fate and contaminant transport model-driven human health risk indexes were calculated due to the presence of dense non-aqueous phase liquids (DNAPLs) in the subsurface environment of air force base area in Florida, USA. Source concentration data of DNAPLs was used for the calculation of transport model-driven health risk indexes for the children and adult sub-population via direct oral ingestion and skin dermal contact exposure scenario using 10,000 Monte Carlo type simulations. The highest variation in the probability distribution of transformed DNAPL compound (cis-dichloroethene (cis-DCE) > vinyl chloride (VC)) was observed as compared to parent DNAPL (tetrachloroethene (PCE)) based on the 50-year simulation timespan. Transformed DNAPL compounds (VC, cis-DCE) posed the highest risk to human health for a longer duration (up to 15 years) in comparison to parent DNAPL (PCE), as non-carcinogenic hazard quotient varied from 400 to 1100. Carcinogenic health risks were observed as 3-order of magnitude higher than safe limit (HQSafe < 10−6) from 2nd to 5th year timespan and fall in the high-risk zone, indicating the need for a remediation plan for a contaminated site. Variance attribution analysis revealed that concentration, body weight, and exposure duration (contribution percentage – 70 to 95%) were the most important parameters, highlighting the impact of dispersivity and exposure model in the estimation of risk indexes. This approach can help decision-makers when a contaminated site with partial data on hydrogeological properties and with higher uncertainty in model parameters is to be assessed for the formulation of remediation measures.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号