首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Long-acting local anesthetics cause muscle damage. Moreover, long-acting local anesthetics act as uncoupler of oxidative phosphorylation in isolated mitochondria and enhance sarcoplasmic reticulum Ca(2+) release. The aim of the study was to evaluate effects of perineural injections of local anesthetics on mitochondrial energetic metabolism and intracellular calcium homeostasis in vivo. METHODS: Femoral nerve block catheters were inserted in adult male Wistar rats. Rats were randomized and received seven injections (1 ml/kg) of bupivacaine, levobupivacaine, ropivacaine, or isotonic saline at 8-h intervals. Rats were killed 8 h after the last injection. Psoas muscle was quickly dissected from next to the femoral nerve. Local anesthetic concentrations in muscle were determined. Oxidative capacity was measured in saponin-skinned fibers. Oxygen consumption rates were measured, and mitochondrial adenosine triphosphate synthesis rate was determined. Enzymatic activities of mitochondrial respiratory chain complexes were evaluated. Local calcium release events (calcium sparks) were analyzed as well as sarcoplasmic reticulum calcium content in saponin-skinned fibers. RESULTS: Eight hours after the last injection, psoas muscle concentration of local anesthetics was less than 0.3 microg/g tissue. Adenosine triphosphate synthesis and adenosine triphosphate-to-oxygen ratio were significantly decreased in the muscle of rats treated with local anesthetics. A global decrease (around 50%) in all of the enzyme activities of the respiratory chain was observed. Levobupivacaine increased the amplitude and frequency of the calcium sparks, whereas lower sarcoplasmic reticulum calcium content was shown. CONCLUSION: Bupivacaine, levobupivacaine, and ropivacaine injected via femoral nerve block catheters induce a deleterious effect in mitochondrial energy, whereas only levobupivacaine disturbs calcium homeostasis.  相似文献   

2.
Background: High lipophilic local anesthetics interfere with mitochondrial energy metabolism. These metabolic effects could in part explain some of the toxic effects of local anesthetics, such as bupivacaine-induced myocardial depression. The aim of this study was to compare the bioenergetic effects of the local anesthetics bupivacaine and ropivacaine.

Methods: The effects of both local anesthetics on mitochondrial energy metabolism were studied in rat heart isolated mitochondria and in saponin-skinned left ventricle fibers. Oxygen consumption, adenosine triphosphate synthesis, and enzymatic activities of the complexes of the respiratory chain were measured.

Results: Bupivacaine and ropivacaine acted, in isolated mitochondria, as uncouplers between oxygen consumption and phosphorylation of adenosine diphosphate. Further, an inhibitory effect of mitochondrial respiration was evidenced with both anesthetics during maximal respiration and was assigned to a direct inhibition of complex I of the respiratory chain. Mitochondrial adenosine triphosphate synthesis was decreased by both mechanisms. However, both in isolated mitochondria and in permeabilized heart fibers, ropivacaine was less potent than bupivacaine. Adenosine triphosphate synthesis was completely suppressed at 3 mM ([approximately] 0.1%) bupivacaine, whereas 3 mM ropivacaine induced only about a 40% inhibition.  相似文献   


3.
Background: Highly lipophilic local anesthetics interfere with mitochondrial energy metabolism. These metabolic effects could, in part, explain some toxic effects of local anesthetics, such as bupivacaine-induced myocardial depression. The purpose of this study was to compare the optically pure isomers of bupivacaine on heart mitochondrial bioenergetics.

Methods: Both bupivacaine enantiomers were tested on rat heart isolated mitochondria. Oxygen consumption, adenosine triphosphate synthesis, and enzymatic activities of the four complexes of the respiratory chain were measured.

Results: No significant differences were found between R(+)- and S (-)-bupivacaine on mitochondrial oxidative phosphorylation with a similar dose-dependent decrease in adenosine triphosphate synthesis. Complex I (nicotinamide adenine dinucleotide ubiquinone reductase) was the enzymatic complex of the respiratory chain most sensitive to the bupivacaine isomers. Half-inhibitory concentrations for R (+)- and S (-)-bupivacaine were not statistically different (3.3 +/- 0.4 mm and 2.8 +/- 0.6 mm, respectively).  相似文献   


4.
BACKGROUND: Highly lipophilic local anesthetics interfere with mitochondrial energy metabolism. These metabolic effects could, in part, explain some toxic effects of local anesthetics, such as bupivacaine-induced myocardial depression. The purpose of this study was to compare the optically pure isomers of bupivacaine on heart mitochondrial bioenergetics. METHODS: Both bupivacaine enantiomers were tested on rat heart isolated mitochondria. Oxygen consumption, adenosine triphosphate synthesis, and enzymatic activities of the four complexes of the respiratory chain were measured. RESULTS: No significant differences were found between R(+)- and S(-)-bupivacaine on mitochondrial oxidative phosphorylation with a similar dose-dependent decrease in adenosine triphosphate synthesis. Complex I (nicotinamide adenine dinucleotide ubiquinone reductase) was the enzymatic complex of the respiratory chain most sensitive to the bupivacaine isomers. Half-inhibitory concentrations for R(+)- and S(-)-bupivacaine were not statistically different (3.3 +/- 0.4 mm and 2.8 +/- 0.6 mm, respectively). CONCLUSIONS: No stereospecific effects of bupivacaine enantiomers were shown in the inhibition of complex I activity and uncoupling of oxidative phosphorylation. This can be correlated with the lack of stereospecific effects of bupivacaine on myocardial depression. The lipid solubility of local anesthetics appears to be the principal physicochemical factor affecting the potency of these tertiary amines on mitochondrial bioenergetics.  相似文献   

5.
Background: Adaptation to chronic exposure to hypoxia alters energy metabolism in the heart, particularly in the left ventricle, which undergoes a loss in oxidative capacity. Highly lipophilic local anesthetics interfere with mitochondrial energy metabolism. The purpose of this study was to compare the effects of bupivacaine on mitochondrial energy metabolism in heart of rats subjected to normoxic or hypoxic environments.

Methods: Male Wistar rats (n = 10) were subjected to hypobaric hypoxia (simulated altitude = 5,000 m, 380 mmHg) for 2 weeks. Control rats (n = 10) were maintained in an ambient normoxic environment. Mitochondrial metabolism (oxygen consumption and adenosine triphosphate synthesis) was assessed using saponin-skinned ventricular fibers. Bupivacaine (0-5 mm) was tested on both left and right ventricles of normoxic or hypoxic heart.

Results: In animals exposed to hypobaric hypoxia for 14 days, cardiac mass significantly increased, and the right-to-left ventricular ratio was approximately twofold (0.48 +/- 0.11 vs. 0.22 +/- 0.04, P < 0.05). Oxygen consumption and adenosine triphosphate synthesis were significantly lower in the hypoxic left ventricles but not in the right ones. The uncoupling effect of bupivacaine was more pronounced in the left ventricle from hypoxic heart than in the right ventricle; the bupivacaine-induced decrease in the adenosine triphosphate synthesis rate and in the adenosine triphosphate-to-oxygen ratio was significantly greater in the hypoxic left ventricle than in the normoxic one.  相似文献   


6.
BACKGROUND: Adaptation to chronic exposure to hypoxia alters energy metabolism in the heart, particularly in the left ventricle, which undergoes a loss in oxidative capacity. Highly lipophilic local anesthetics interfere with mitochondrial energy metabolism. The purpose of this study was to compare the effects of bupivacaine on mitochondrial energy metabolism in heart of rats subjected to normoxic or hypoxic environments. METHODS: Male Wistar rats (n = 10) were subjected to hypobaric hypoxia (simulated altitude = 5,000 m, 380 mmHg) for 2 weeks. Control rats (n = 10) were maintained in an ambient normoxic environment. Mitochondrial metabolism (oxygen consumption and adenosine triphosphate synthesis) was assessed using saponin-skinned ventricular fibers. Bupivacaine (0-5 mM) was tested on both left and right ventricles of normoxic or hypoxic heart. RESULTS: In animals exposed to hypobaric hypoxia for 14 days, cardiac mass significantly increased, and the right-to-left ventricular ratio was approximately twofold (0.48 +/- 0.11 vs. 0.22 +/- 0.04, P < 0.05). Oxygen consumption and adenosine triphosphate synthesis were significantly lower in the hypoxic left ventricles but not in the right ones. The uncoupling effect of bupivacaine was more pronounced in the left ventricle from hypoxic heart than in the right ventricle; the bupivacaine-induced decrease in the adenosine triphosphate synthesis rate and in the adenosine triphosphate-to-oxygen ratio was significantly greater in the hypoxic left ventricle than in the normoxic one. CONCLUSIONS: Chronic hypoxia impairs cardiac energy metabolism in left ventricles and enhances the depressant effects of bupivacaine on mitochondrial functions.  相似文献   

7.
An isolated rabbit heart preparation was used to characterize the effects of hypothermia on the deterioration in mitochondrial respiratory function and on the calcium overload that occurs during ischemia and reperfusion. Hearts were perfused aerobically with an asanguineous solution for 120 minutes or made totally ischemic for 90 minutes at 37 degrees, 34 degrees, 28 degrees, 22 degrees C, respectively, and reperfused for 30 minutes at 37 degrees C. Mitochondrial function was assessed by measuring calcium content, yield, oxygen consumption, and adenosine triphosphate-producing capacities. In addition, the mechanical function of the hearts was measured together with tissue adenosine triphosphate, creatine phosphate, and calcium content. In a separate series of experiments, the effect of temperature on the initial rate of respiration-supported calcium accumulation of mitochondria from freshly excised, nonperfused rabbit hearts was determined. The hearts made ischemic at 37 degrees C were severely depleted of tissue adenosine triphosphate and creatine phosphate. Their mitochondria accumulated calcium and the oxidative phosphorylating activity was impaired. During reperfusion, tissue and mitochondrial calcium levels were substantially increased, state 3 of mitochondrial respiration was further impaired, and the adenosine triphosphate-generating capacities were severely reduced. Diastolic pressure increased and there was no recovery of developed pressure. Isolated mitochondrial function of hearts made ischemic at 28 degrees and 22 degrees C was protected. There was a less marked increase in tissue and mitochondrial calcium, and the initial rate and total production of adenosine triphosphate were maintained. In these hearts there was an almost complete recovery of mechanical performance at reperfusion, whereas the ischemia-induced depletion of tissue adenosine triphosphate and creatine phosphate was not significantly reduced by hypothermia. The hearts made ischemic at 34 degrees C were only partially protected. These data suggest that a decrease in temperature from 37 degrees to 22 degrees C during ischemia did not significantly prevent depletion of adenosine triphosphate at the end of ischemia but reduced tissue and mitochondrial calcium overload, maintaining mitochondrial function. Thus in our experiments the protective effect of hypothermia might be related to a direct reduction of tissue and mitochondrial calcium accumulation rather than to a slowing in rates of energy utilization. This possibility is supported by the finding that in freshly excised, nonperfused rabbit hearts, hypothermia significantly reduced the initial rate of mitochondrial calcium transport.  相似文献   

8.

Purpose

Bupivacaine-induced myotoxicity is associated with mitochondrial bioenergetic alterations. The impact of the duration of bupivacaine treatment on mitochondrial energy production remains undetermined. Here, we assessed, in vivo, the alteration of mitochondrial metabolism following different durations of bupivacaine exposure (40, 56, or 112 hr) that correspond to 5, 7, or 14 repeated injections of 0.25% bupivacaine, respectively.

Methods

Rats were divided randomly into seven different groups: one control group (no catheter); three groups with normal saline injections (1 mL·kg?1) every eight hours via a femoral nerve catheter for 40, 56, and 112 hr, respectively; and three groups with 0.25% bupivacaine injections (1 mL·kg?1) every eight hours via a femoral nerve catheter for 40, 56, and 112 hr. Psoas and gracilis muscle samples located within the bupivacaine infusion-diffusion space were investigated. To estimate mitochondrial respiratory capacity, the protein content of the mitochondrial respiratory chain apparatus was evaluated by measuring citrate synthase activity. To measure mitochondrial respiratory function, adenosine diphosphate-stimulated oxygen consumption was measured by polarography in saponin-skinned muscle fibres using glutamate-malate or succinate as energy substrates.

Results

In psoas and gracilis muscles, saline solution had no effect on the two mitochondrial parameters. Bupivacaine induced a significant decrease in the citrate synthase activity in psoas (r2 = 0.74; P < 0.001) and gracilis muscle (r2 = 0.52; P < 0.001), and there was a significant decrease in the adenosine diphosphate-stimulated oxygen consumption using glutamate or succinate as substrates in both muscles (P < 0.001).

Conclusions

The severity of bupivacaine-induced myotoxicity is closely linked to the duration of bupivacaine exposure in the muscle fibres located close to the catheter tip.  相似文献   

9.
Volatile anesthetics used in daily clinical routine, are associated with a rare but life-threatening disease, malignant hyperthermia. To date it is well known that, with the exception of xenon and nitrous oxide, all volatile anesthetics have the potential to trigger calcium (Ca(2+)) release from the sarcoplasmic reticulum, thereby influencing the Ca(2+) homeostasis in muscle fibers. The effects of volatile anesthetics have been previously studied by recording Ca(2+)-activated force transients in muscle fibers and by quantifying the effects on isolated intracellular Ca(2+)-release channels (ryanodin receptors). The use of high resolution fluorescence microscopy methods in combination with spatio-temporal mathematical models allows the effects of volatile anesthetics on functional clusters of ryanodin receptors in mammalian skeletal muscle fibers to be studied in situ for the first time.Thus, the analysis of cellular Ca(2+)-activated force production and single channel properties in conjunction with mathematical models allows the quantification of the effects of volatile anesthetics on Ca(2+)-release in the natural physiological environment on the basis of the underlying molecular architecture. In addition to the basic understanding of alterations in the Ca(2+) homeostasis induced by volatile anesthetics in muscle and nerve cells, the results are also of direct clinical importance for the understanding of the pathogenesis of malignant hyperthermia,where ryanodin receptor mutations are currently thought to result in an increased Ca(2+) release under the influence of volatile anesthetics.  相似文献   

10.
The Ca2+-adenosine triphosphatase (ATPase) of skeletal muscle sarcoplasmic reticulum is a single protein species that pumps calcium ions at the expense of adenosine triphosphate (ATP). The reaction cycle includes phosphorylated intermediates which change the affinity and orientation of calcium sites. The monomer appears to be fully functional. Cross-linking and fluorescence studies indicate that ATP binds to a domain that approaches the phosphorylation site and becomes occluded during the reaction cycle. Interactions between these and the calcium channel, possibly via an energy transduction domain, ensure efficient coupling of catalytic and transport cycles.  相似文献   

11.
BACKGROUND: Halogenated anesthetics depress myocardial contractility by altering a number of specific mechanisms. These alterations include decreases in inward calcium current and sarcoplasmic reticulum function and reduced calcium myofilament sensitivity. However, the direct effects of volatile anesthetics on cross-bridge function have yet to be precisely determined. METHODS: Myosin monomers and actin filaments were isolated from fresh rat left ventricles and rabbit skeletal muscles, respectively. Halothane or isoflurane was added at concentrations equivalent to 1 and 2 minimum alveolar concentration (MAC). Motility of actin filaments over myosin was initiated by adding 2 mm adenosine triphosphate and was analyzed at 30 degrees C. Maximum actomyosin adenosine triphosphatase activity and the association constant of myosin for actin were determined from a double-reciprocal Lineweaver-Burk plot of the adenosine triphosphatase rate versus actin concentration. A known inhibitor of actomyosin function, 2,3-butanedione 2-monoxime (2 mm), was used in positive control experiments. Data are presented as mean +/- SD. RESULTS: Motility velocities driven by myosin were not significantly different between baseline and 1 and 2 MAC halothane (2.70 +/- 0.33, 2.72 +/- 0.36, and 2.70 +/- 0.40 microm/s, respectively). Similarly, motility velocities driven by myosin were not significantly different between baseline and 1 and 2 MAC isoflurane (2.73 +/- 0.33, 2.72 +/- 0.37, and 2.72 +/- 0.40 microm/s, respectively). Neither of the two halogenated anesthetics, at any concentration tested, significantly modified the maximum actomyosin adenosine triphosphatase activity or the association constant of myosin for actin as compared with baseline. 2,3-Butanedione 2-monoxime induced a drastic reduction in both motility velocity and maximum actomyosin adenosine triphosphatase activity. CONCLUSION: These results indicate that isoflurane and halothane do not directly depress the mechanical or enzymatic properties of cross-bridges in the heart.  相似文献   

12.
Background: Halogenated anesthetics depress myocardial contractility by altering a number of specific mechanisms. These alterations include decreases in inward calcium current and sarcoplasmic reticulum function and reduced calcium myofilament sensitivity. However, the direct effects of volatile anesthetics on cross-bridge function have yet to be precisely determined.

Methods: Myosin monomers and actin filaments were isolated from fresh rat left ventricles and rabbit skeletal muscles, respectively. Halothane or isoflurane was added at concentrations equivalent to 1 and 2 minimum alveolar concentration (MAC). Motility of actin filaments over myosin was initiated by adding 2 mm adenosine triphosphate and was analyzed at 30[degrees]C. Maximum actomyosin adenosine triphosphatase activity and the association constant of myosin for actin were determined from a double-reciprocal Lineweaver-Burk plot of the adenosine triphosphatase rate versus actin concentration. A known inhibitor of actomyosin function, 2,3-butanedione 2-monoxime (2 mm), was used in positive control experiments. Data are presented as mean +/- SD.

Results: Motility velocities driven by myosin were not significantly different between baseline and 1 and 2 MAC halothane (2.70 +/- 0.33, 2.72 +/- 0.36, and 2.70 +/- 0.40 [mu]m/s, respectively). Similarly, motility velocities driven by myosin were not significantly different between baseline and 1 and 2 MAC isoflurane (2.73 +/- 0.33, 2.72 +/- 0.37, and 2.72 +/- 0.40 [mu]m/s, respectively). Neither of the two halogenated anesthetics, at any concentration tested, significantly modified the maximum actomyosin adenosine triphosphatase activity or the association constant of myosin for actin as compared with baseline. 2,3-Butanedione 2-monoxime induced a drastic reduction in both motility velocity and maximum actomyosin adenosine triphosphatase activity.  相似文献   


13.
Komai H  Lokuta AJ 《Anesthesiology》1999,90(3):835-843
BACKGROUND: Although various local anesthetics can cause histologic damage to skeletal muscle when injected intramuscularly, bupivacaine appears to have an exceptionally high rate of myotoxicity. Research has suggested that an effect of bupivacaine on sarcoplasmic reticulum Ca2+ release is involved in its myotoxicity, but direct evidence is lacking. Furthermore, it is not known whether the toxicity depends on the unique chemical characteristics of bupivacaine and whether the toxicity is found only in skeletal muscle. METHODS: The authors studied the effects of bupivacaine and the similarly lipid-soluble local anesthetic, tetracaine, on the Ca2+ release channel-ryanodine receptor of sarcoplasmic reticulum in swine skeletal and cardiac muscle. [3H]Ryanodine binding was used to measure the activity of the Ca2+ release channel-ryanodine receptors in microsomes of both muscles. RESULTS: Bupivacaine enhanced (by two times at 5 mM) and inhibited (66% inhibition at 10 mM) [3H]ryanodine binding to skeletal muscle microsomes. In contrast, only inhibitory effects were observed with cardiac microsomes (about 3 mM for half-maximal inhibition). Tetracaine, which inhibits [3H]ryanodine binding to skeletal muscle microsomes, also inhibited [3H]ryanodine binding to cardiac muscle microsomes (half-maximal inhibition at 99 microM). CONCLUSIONS: Bupivacaine's ability to enhance Ca2+ release channel-ryanodine receptor activity of skeletal muscle sarcoplasmic reticulum most likely contributes to the myotoxicity of this local anesthetic. Thus, the pronounced myotoxicity of bupivacaine may be the result of this specific effect on Ca2+ release channel-ryanodine receptor superimposed on a nonspecific action on lipid bilayers to increase the Ca2+ permeability of sarcoplasmic reticulum membranes, an effect shared by all local anesthetics. The specific action of tetracaine to inhibit Ca2+ release channel-ryanodine receptor activity may in part counterbalance the nonspecific action, resulting in moderate myotoxicity.  相似文献   

14.
BACKGROUND: Volatile anesthetics produce bronchodilation in part by depleting sarcoplasmic reticulum Ca stores in airway smooth muscle (ASM). Other bronchodilatory drugs are known to act via cyclic nucleotides (cyclic adenosine 3',5'-cyclic monophosphate, cyclic guanosine 3',5'-cyclic monophosphate). Intracellular Ca regulation in ASM involves plasma membrane Ca influx, including that triggered by sarcoplasmic reticulum Ca depletion (store-operated Ca entry [SOCE]). The authors hypothesized that anesthetics and bronchodilatory agents interact in inhibiting SOCE, thus enhancing ASM relaxation. METHODS: In enzymatically dissociated porcine ASM cells imaged using fluorescence microscopy, sarcoplasmic reticulum Ca was depleted by 1 microm cyclopiazonic acid in 0 extracellular Ca, nifedipine, and potassium chloride (preventing Ca influx through L-type channels and SOCE). Extracellular Ca was rapidly reintroduced to selectively activate SOCE in the presence or absence of 1 minimum alveolar concentration (MAC) halothane, isoflurane, or sevoflurane. Anesthetic interference with SOCE regulation by cyclic nucleotides was examined by activating SOCE in the presence of (1) 1 microm acetylcholine, (2) 100 microm dibutryl cyclic adenosine 3',5'-cyclic monophosphate, or (3) 100 microm 8-bromo-cyclic guanosine 3',5'-cyclic monophosphate. RESULTS: SOCE was enhanced by acetylcholine, whereas volatile anesthetics and both cyclic nucleotides partially inhibited Ca influx. Preexposure to 1 or 2 MAC anesthetic (halothane > isoflurane > sevoflurane) inhibited SOCE. Only halothane and isoflurane inhibited acetylcholine-induced augmentation of Ca influx, and significantly potentiated cyclic nucleotide inhibition such that no influx was observed in the presence of anesthetics and cyclic nucleotides. CONCLUSIONS: These data indicate that volatile anesthetics prevent sarcoplasmic reticulum refilling by inhibiting SOCE and enhancing cyclic nucleotide blunting of Ca influx in ASM. Such interactions likely result in substantial airway relaxation in the presence of both anesthetics and bronchodilatory agents such as beta agonists or nitric oxide.  相似文献   

15.
BACKGROUND:: The gene gas-1 encodes a subunit of complex I of the mitochondrial electron transport chain in Caenorhabditis elegans. A mutation in gas-1 profoundly increases sensitivity of C. elegans to volatile anesthetics. It is unclear which aspects of mitochondrial function account for the hypersensitivity of the mutant. METHODS:: Oxidative phosphorylation was determined by measuring mitochondrial oxygen consumption using electron donors specific for either complex I or complex II. Adenosine triphosphate concentrations were determined by measuring luciferase activity. Oxidative damage to mitochondrial proteins was identified using specific antibodies. RESULTS:: Halothane inhibited oxidative phosphorylation in isolated wild-type mitochondria within a concentration range that immobilizes intact worms. At equal halothane concentrations, complex I activity but not complex II activity was lower in mitochondria from mutant (gas-1) animals than from wild-type (N2) animals. The halothane concentrations needed to immobilize 50% of N2 or gas-1 animals, respectively, did not reduce oxidative phosphorylation to identical rates in the two strains. In air, adenosine triphosphate concentrations were similar for N2 and gas-1 but were decreased in the presence of halothane only in gas-1 animals. Oxygen tension changed the sensitivity of both strains to halothane. When nematodes were raised in room air, oxidative damage to mitochondrial proteins was increased in the mutant animal compared with the wild type. CONCLUSIONS:: Rates of oxidative phosphorylation and changes in adenosine triphosphate concentrations by themselves do not control anesthetic-induced immobility of wild-type C. elegans. However, they may contribute to the increased sensitivity to volatile anesthetics of the gas-1 mutant. Oxidative damage to proteins may be an important contributor to sensitivity to volatile anesthetics in C. elegans.  相似文献   

16.
The mechanisms responsible for the direct negative inotropic effects of the three currently used volatile anesthetics (halothane, enflurane and isoflurane) are reviewed. These agents interfere at each step of excitation-contraction coupling, i.e. sarcolemmal membrane, sarcoplasmic reticulum and contractile proteins. At the myofilament level, they decrease both calcium sensitivity and maximal developed force of cardiac skinned fibers of various species, a preparation in which all functional membranes are destroyed and thus allowing to study the direct effects of volatile anesthetics on myocardial contractile proteins. The effects of the three volatile anesthetics are similar at equipotent concentrations. The site of action seems to involve the regulatory proteins of the thin myofilament, especially troponin-tropomyosin complex. At the sarcolemmal level, all three anesthetics decrease Ca++ entry through the voltage-dependent calcium channels, an effect that seems slightly more important for both halothane and enflurane than for isoflurane. However, these two sites of action (contractile proteins and sarcolemmal membrane) are not sufficient to explain their overall negative inotropic effect. The third site of action involves the sarcoplasmic reticulum. Halothane and enflurane produce an initial liberation of Ca++ from internal stores, while isoflurane does not. All three agents decrease the net uptake of Ca++ and increase the permeability of sarcoplasmic reticulum to Ca++, similar to the effect of caffeine. However, the resulting effect, i.e. a reduction of sarcoplasmic reticulum Ca++ content occurs at clinical concentrations of halothane or enflurane, while much higher concentrations of isoflurane are required to produce a similar reduction. This differential effect on the sarcoplasmic reticulum function (which is quantitative but not qualitative) seems to be mainly responsible for the lesser negative inotropic effect of isoflurane as observed in intact cardiac muscles of various species including humans. The knowledge of the mechanisms of action of volatile anesthetics is important for understanding the potential consequences associated with their use in patients receiving cardiac drugs, especially calcium blockers and phosphodiesterase inhibitors.  相似文献   

17.
To clarify the mechanism by which volatile anesthetics initiate malignant hyperthermia (MH), we examined the effect of halothane, isoflurane, and enflurane on Ca2+ uptake and release by sarcoplasmic reticulum vesicles isolated from MH-susceptible (MHS) and normal pig muscle. Clinical concentrations of these anesthetics (0.1-0.5 mM) stimulated sarcoplasmic reticulum ATP-dependent Ca2+ uptake (maximal at approximately 4 mM), whereas 10-20 times the clinical anesthetic concentration inhibited Ca2+ uptake. There was no significant difference between MHS and normal sarcoplasmic reticulum in any aspect of Ca2+ uptake. Ca2+ release from 45Ca(2+)-filled sarcoplasmic reticulum vesicles in a 10(-8) M Ca(2+)-containing medium (pH 7.0) was significantly stimulated at clinical concentrations of all three volatile anesthetics (anesthetic concentration for the 50% stimulation of Ca2+ release = 0.096-0.22 mM); however, the rate constant for Ca2+ release from MHS sarcoplasmic reticulum was in all cases significantly greater than that from normal sarcoplasmic reticulum. Furthermore, 0.5 mM halothane had no effect on Ca2+ release from normal sarcoplasmic reticulum at pH values less than 6.8, although it could still significantly stimulate Ca2+ release from MHS sarcoplasmic reticulum even at pH 6.4; similar results were obtained for isoflurane and enflurane. These studies thus demonstrate that the interaction of volatile anesthetics with the sarcoplasmic reticulum Ca(2+)-release channel is altered in MHS porcine muscle such that the channel may be activated even at a Ca2+ concentration or pH that would be expected to maintain the channel in the closed state.  相似文献   

18.
BACKGROUND: Heart muscle primarily relies on adenosine triphosphate produced by oxidative phosphorylation and is highly vulnerable to anoxic insult. Although a number of strategies aimed at improving myopreservation are available, no effective means of preserving mitochondrial energetics under conditions of anoxic injury have been developed. Openers of mitochondrial adenosine triphosphate-sensitive potassium channels have emerged as powerful cardioprotective agents presumably capable of maintaining mitochondrial function under metabolic stress. Here, we evaluated the ability of a prototype mitochondrial adenosine triphosphate-sensitive potassium channel opener, diazoxide, to preserve oxidative phosphorylation in mitochondria subjected to anoxia and reoxygenation. METHODS: Mitochondria were isolated from rat hearts and subjected to 20 minutes of anoxia, followed by reoxygenation. Mitochondrial respiration and oxidative phosphorylation, as well as mitochondrial integrity, were assessed by means of ion-selective minielectrodes, high-performance liquid chromatography, fluorometry, and electron microscopy. RESULTS: Anoxia-reoxygenation decreased the rate of adenosine diphosphate-stimulated oxygen consumption, inhibited adenosine triphosphate production, and disrupted mitochondrial integrity. On average, anoxic stress reduced adenosine diphosphate-stimulated respiration from 291 +/- 14 to 141 +/- 15 ng-atoms O(2). min(-1). mg(-1) protein and decreased the rate of adenosine triphosphate production from 752 +/- 14 to 414 +/- 34 nmol adenosine triphosphate. min(-1). mg(-1) protein. After anoxia, the majority (88%) of mitochondria was damaged or swollen and released adenylate kinase, a marker of mitochondrial integrity. Diazoxide (100 micromol/L), present throughout anoxia, preserved adenosine diphosphate-stimulated respiration at 255 +/- 7 ng-atoms O(2). min(-1). mg(-1) protein and adenosine triphosphate production at 640 +/- 39 nmol adenosine triphosphate. min(-1). mg(-1) protein. Diazoxide also protected mitochondrial structure from anoxia-mediated damage, so that after anoxic stress, 67% of mitochondria remained intact and adenylate kinase was confined to the mitochondria. CONCLUSIONS: The present study demonstrates that diazoxide diminishes anoxia-induced functional and structural deterioration of cardiac mitochondria. By protecting mitochondria and preserving myocardial energetics, diazoxide may be useful under conditions of reduced oxygen availability, including global surgical ischemia or storage of donor heart.  相似文献   

19.
This study was designed to test the hypothesis that the volatile anesthetics directly affect cardiac contractile proteins. For this purpose, the effects of various anesthetic doses of halothane, enflurane, and isoflurane on myocardial calcium sensitivity and maximal calcium-activated force were examined in rat cardiac fibers skinned with Triton X-100. In this preparation, all membranes are chemically destroyed, and the sarcoplasmic reticulum is not functional. The three anesthetics shifted the pCa/tension curves (pCa = -log10[Ca2+]) toward higher calcium concentrations and decreased pCa for half-maximum activation (pCa50) in a dose-dependent and reversible fashion without changing the slope of this relationship (Hill coefficient). No differences between agents were observed at equipotent anesthetic concentrations. In addition, the three anesthetics decreased both maximal activated tension and tension at half-maximal activation in a dose-dependent fashion. Both the decrease in calcium sensitivity and the decrease in maximum activated tension may contribute to the negative inotropic effects of these agents. The relative importance of such effects compared with the other mechanisms of action remains to be determined, however.  相似文献   

20.
BACKGROUND: Increased intracellular Ca concentrations are considered to be a major pathomechanism in local anesthetic myotoxicity. Racemic bupivacaine and S-ropivacaine cause Ca release from the sarcoplasmic reticulum of skeletal muscle fibers and simultaneously inhibit Ca reuptake. Examining the optical isomers of both agents, the authors investigated stereoselective effects on muscular Ca regulation to get a closer insight in subcellular mechanisms of local anesthetic myotoxicity. METHODS: R- and S-enantiomers as well as racemic mixtures of both agents were tested in concentrations of 1, 5, 10, and 15 mm. Saponin-skinned muscle fibers from the extensor digitorum longus muscle of BALB/c mice were examined according to a standardized procedure. For the assessment of effects on Ca uptake and release from the sarcoplasmic reticulum, agents were added to the loading solution and the release solution, respectively, and force and Ca transients were monitored. RESULTS: The effects of S-enantiomers on both Ca release and reuptake were significantly more pronounced than those of racemic mixtures and R-enantiomers, respectively. In addition, the effects of racemates were markedly stronger than those of R-enantiomers. With regard to Ca release, the effects of bupivacaine isomers were more pronounced than the isomers of ropivacaine. CONCLUSIONS: These data show that stereoselectivity is involved in alterations of intracellular Ca regulation by bupivacaine and ropivacaine. S-enantiomers seem to be more potent than R-enantiomers, with intermediate effects of racemic mixtures. In addition, lipophilicity also seems to determine the extent of Ca release by local anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号