首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
D Kowalski  M Laskowski 《Biochemistry》1976,15(6):1300-1309
All the reactive amino groups in soybean trypsin inhibitor (Kunitz) were protected by guanidination of 9 out of 10 lysyl residues with O-methylisourea and by carbamoylation of the NH2 terminal Asp with potassium cyanate. This derivative was converted to modified inhibitor (Arg63-Ile64 reactive site peptide bond hydrolyzed) by incubation with trypsin at pH 3. The NH2 terminal of Ile64 was allowed to react with phenyl isothiocyanate to produce inactive phenylthiocarbamoyl-modified inhibitor. Treatment with trifluoroacetic acid formed the anilinothiazolinone of Ile64 yielding des-Ile64-modified inhibitor. After renaturation and purification, this material coelectrophoresed with modified inhibitor but did not form a stable complex with trypsin. Incubation with tert-butyloxycarbonyl-(amino acid)-N-hydroxysuccinimide esters yielded [tert-butyloxycarbonyl-(amino acid64)]-modified inhibitor. The tert-butyloxycarbonyl protective group was removed in trifluoroacetic acid. After renaturation, active [amino acid64]-modified inhibitors were obtained for Ile64, Ala64, Leu64, and Gly64 replacements. The resynthesis of the reactive-site peptide bound by kinetic control dissociation of the trypsin-inhibitor complex yielded fully active [Ala64]-virgin inhibitor. Thus, soybean trypsin inhibitor (Kunitz) has been shown to tolerate the replacement of the P1' residue with retention of activity. The importance of P1' residues in the function of protein proteinase inhibitors is discussed.  相似文献   

2.
The contribution of the P1' residue at the first reactive site of peanut protease inhibitor B-III to the inhibition was analyzed by replacement of the P1' Arg(11) with other amino acids (Arg, Ser, Ala, Leu, Phe, Asp) after selective modification of the second reactive site. The Arg derivative had the same trypsin inhibitory activity as the native inhibitor (Ki = 2 X 10(-9) M). The Ser derivative inhibited more weakly (Ki = 2 X 10(-8) M). The Ala and Leu derivatives inhibited trypsin very weakly (Ki = 2 X 10(-7) M and 4 X 10(-7) M, respectively), and the Phe and Asp derivatives not at all. These results suggest that the P1' arginine residue is best for inhibitory activity at the first reactive site of B-III, although it has been suggested that a P1' serine residue at the reactive site is best for inhibitory activity of Bowman-Birk type inhibitors.  相似文献   

3.
The complete amino acid sequence of chicken ovomucoid (OMCHI) is presented. OMCHI consists of three tandem domains, each homologous to pancreatic secretory trypsin inhibitor (Kazal) and each with an actual or putative reactive site for inhibition of serine proteinases. The major reactive site for bovine beta-trypsin is the Arg89-Ala peptide bond in the second domain. The equilibrium constant for hydrolysis of this peptide bond, K0hyd, is 1.85. The first and third domains of OMCHI are relatively ineffective inhibitors of several serine proteinases against which they were tested. OMCHI is a mixture of two forms: the major form with all of the amino acid residues and a minor form with Val134-Ser135 deleted. This polymorphism is present in all chicken eggs and is the result of ambiguous excision at the 5' end of the F intron. Procedures are given for preparation of modified chicken ovomucoid, OMCHI (in which the Arg89-Ala bond is hydrolyzed), of the first domain, OMCHI1 (residues 1-68), of the second domain, OMCHI2 (residues 65-130), and of the third domain, OMCHI3 (residues 131-186). In the case of the third domain, both the Asn175 glycosylated form, OMCHI3(+), and the carbohydrate-free form, OMCHI3(-), were obtained. These isolated native domains are useful in many studies of ovomucoid behavior.  相似文献   

4.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

5.
Single amino acid mutations of Met103 in the hydrophobic core of a serine protease inhibitor, Streptomyces subtilisin inhibitor, caused little change in the inhibitory activity, as measured by the inhibitor constant, although some altered the thermodynamic stability of the protein considerably. (1)H NMR investigations showed that the conformational stress caused by the replacement of Met103 with Gly, Ala, Val, and Ile, namely, the effects of the cavities generated by replacements with smaller side-chains and of the steric distortions generated by beta-branched side-chains, caused considerable changes in the structural arrangement of the side-chains within the core. However, these structural changes were absorbed within the hydrophobic core, without distorting the structure of the reactive site essential for the protein function. These results provide an excellent example of the conformational flexibility of a protein core and the degree of its tolerance of an amino acid replacement. The results also reveal the crucially designed structural relationship between the core of the inhibitor and the enzyme-binding segment with the reactive site in a serine protease inhibitor.  相似文献   

6.
The role of the S(1) subsite in trypsin, chymotrypsin and plasmin has been examined by measuring the association with seven different mutants of bovine pancreatic trypsin inhibitor (BPTI); the mutants contain Gly, Ala, Ser, Val, Leu, Arg, and Trp at the P(1) position of the reactive site. The effects of substitutions at the P(1) position on the association constants are very large, comprising seven orders of magnitude for trypsin and plasmin, and over five orders for chymotrypsin. All mutants showed a decrease of the association constant to the three proteinases in the same order: Ala>Gly>Ser>Arg>Val>Leu>Trp. Calorimetric and circular dichroism methods showed that none of the P1 substitutions, except the P1-Val mutant, lead to destabilisation of the binding loop conformation. The X-ray structure of the complex formed between bovine beta-trypsin and P(1)-Leu BPTI showed that the P(1)-Leu sterically conflicts with the side-chain of P(3)-Ile, which thereby is forced to rotate approximately 90 degrees. Ile18 (P(3)) in its new orientation, in turn interacts with the Tyr39 side-chain of trypsin. Introduction of a large side-chain at the P1' position apparently leads to a cascade of small alterations of the trypsin-BPTI interface that seem to destabilise the complex by it adopting a less optimized packing and by tilting the BPTI molecule up to 15 degrees compared to the native trypsin-BPTI complex.  相似文献   

7.
Human chymotrypsin C (CTRC) is a pancreatic protease that participates in the regulation of intestinal digestive enzyme activity. Other chymotrypsins and elastases are inactive on the regulatory sites cleaved by CTRC, suggesting that CTRC recognizes unique sequence patterns. To characterize the molecular determinants underlying CTRC specificity, we selected high affinity substrate-like small protein inhibitors against CTRC from a phage library displaying variants of SGPI-2, a natural chymotrypsin inhibitor from Schistocerca gregaria. On the basis of the sequence pattern selected, we designed eight inhibitor variants in which amino acid residues in the reactive loop at P1 (Met or Leu), P2' (Leu or Asp), and P4' (Glu, Asp, or Ala) were varied. Binding experiments with CTRC revealed that (i) inhibitors with Leu at P1 bind 10-fold stronger than those with P1 Met; (ii) Asp at P2' (versus Leu) decreases affinity but increases selectivity, and (iii) Glu or Asp at P4' (versus Ala) increase affinity 10-fold. The highest affinity SGPI-2 variant (K(D) 20 pm) bound to CTRC 575-fold tighter than the parent molecule. The most selective inhibitor variant exhibited a K(D) of 110 pm and a selectivity ranging from 225- to 112,664-fold against other human chymotrypsins and elastases. Homology modeling and mutagenesis identified a cluster of basic amino acid residues (Lys(51), Arg(56), and Arg(80)) on the surface of human CTRC that interact with the P4' acidic residue of the inhibitor. The acidic preference of CTRC at P4' is unique among pancreatic proteases and might contribute to the high specificity of CTRC-mediated digestive enzyme regulation.  相似文献   

8.
It has been shown that the P1 site (the center of the reactive site) of protease inhibitors corresponds to the specificity of the cognate protease, and consequently specificity of Streptomyces subtilisin inhibitor (SSI) can be altered by substitution of a single amino acid at the P1 site. In this paper, to investigate whether similar correlation between inhibitory activity of mutated SSI and substrate preference of protease is observed for subtilisin BPN', which has broad substrate specificity, a complete set of mutants of SSI at the reaction site P1 (position 73) was constructed by cassette and site-directed mutagenesis and their inhibitory activities toward subtilisin BPN' were measured. Mutated SSIs which have a polar (Ser, Thr, Gln, Asn), basic (Lys, Arg), or aromatic amino acid (Tyr, Phe, Trp, His), or Ala or Leu, at the P1 site showed almost the same strong inhibitory activity toward subtilisin as the wild type (Met) SSI. However, the inhibitory activity of SSI variants with an acidic (Glu, Asp), or a beta-branched aliphatic amino acid (Val, Ile), or Gly or Pro, at P1 was decreased. The values of the inhibitor constant (Ki) of mutated SSIs toward subtilisin BPN' were consistent with the substrate preference of subtilisin BPN'. A linear correlation was observed between log(1/Ki) of mutated SSIs and log(1/Km) of synthetic substrates. These results demonstrate that the inhibitory activities of P1 site mutants of SSI are linearly related to the substrate preference of subtilisin BPN', and indicate that the binding mode of the inhibitors with the protease may be similar to that of substrates, as in the case of trypsin and chymotrypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Potato proteinase inhibitor II (PI-2) is composed of two sequence repeats. It contains two reactive site domains. We developed an improved protocol for the production of PI-2 using the yeast Pichia pastoris as the expression host. We then assessed the role of its two reactive sites in the inhibition of trypsin and chymotrypsin by mutating each of the two reactive sites in various ways. From these studies it appears that the second reactive site strongly inhibits both trypsin (Ki = 0.4 nM) and chymotrypsin (Ki = 0.9 nM), and is quite robust towards mutations at positions P2 or P1'. In contrast, the first reactive site inhibits only chymotrypsin (Ki = 2 nM), and this activity is very sensitive to mutations. Remarkably, replacing the reactive site amino acids of domain I with those of domain II did not result in inhibitory activities similar to domain II. The fitness for protein engineering of each domain is discussed.  相似文献   

10.
Horse leukocyte elastase inhibitor rapidly forms stable, equimolar complexes with both human leukocyte elastase and cathepsin G, porcine pancreatic elastase, and bovine alpha-chymotrypsin. Formation of the inhibitor-pancreatic elastase complex results in peptide bond cleavage at the reactive site of the inhibitor so that a small peptide fragment representing the carboxyl-terminal sequence of the inhibitor is released. Sequence analysis of both this peptide, as well as that of an overlapping peptide obtained by enzymatic inactivation of native inhibitor with either Staphylococcus aureus metalloproteinase, Pseudomonas aeruginosa elastase, or cathepsin B, yields data which indicate that the reactive site encompasses a P1-P1' Ala-Met sequence. However, unlike the human endothelial plasminogen activator inhibitor, which also has a Met residue in the P1' position, oxidation of the horse inhibitor only slightly reduces its association rate constant with either of the elastolytic enzymes tested or with chymotrypsin. Comparison of the amino acid sequence at or near the reactive site of the horse inhibitor (P2-P18') with members of the serpin superfamily of proteinase inhibitors indicates that it not only belongs in this class but also represents the first example of a functionally active intracellular serpin.  相似文献   

11.
Site-specific mutagenesis techniques have been used to construct active site variants of the Kunitz-type protease inhibitor domain present in the Alzheimer's beta-amyloid precursor protein (APP-KD). Striking alteration of its protease inhibitory properties were obtained when the putative P1 residue, arginine, was replaced with the small hydrophobic residue valine. The altered protein was no longer inhibitory toward bovine pancreatic trypsin, human Factor XIa, mouse epidermal growth factor-binding protein, or bovine chymotrypsin, all of which are strongly inhibited by the unaltered APP-KD (Sinha, S., Dovey, H. F., Seubert, P., Ward, P. J., Blacher, R. W., Blaber, M., Bradshaw, R. A., Arici, M., Mobley, W. C., and Lieberburg, I. (1990) J. Biol. Chem. 265, 8983-8985). Instead, the P1-Val-APP-KD was a potent inhibitor of human neutrophil elastase, with a Ki = 0.8 nM, as estimated by the inhibition of the activity of human neutrophil elastase measured using a chromogenic substrate. It also inhibited the degradation of insoluble elastin by the enzyme virtually stoichiometrically. Replacement of the P1' (Ala) and P2' (Met) residues of P1-Val-MKD with the corresponding residues (Ser, Ile) from alpha 1-proteinase inhibitor resulted in an inactive protein, underscoring the mechanistic differences between the serpins from the Kunitz-type protease inhibitor family. These results confirm the importance of the P1 arginine residue of APP-KD in determining inhibitory specificity, and are also the first time that a single amino acid replacement has been shown to generate a specific potent human neutrophil elastase inhibitor from a human KD sequence.  相似文献   

12.
The effect of modifications of Met, Arg, and Lys residues on the inhibitory activity of a serine proteinase-inhibiting 21-kD protein from potato tubers has been studied. The data indicate that the 21-kD protein has two independent reactive sites for human leukocyte elastase (or chymotrypsin) and trypsin. It is concluded that the 21-kD inhibitor has Met and Arg residues in the P1 position of the reactive sites responsible for interactions with elastase (or chymotrypsin) and trypsin. It is shown that the 21-kD protein is capable of forming a triple complex binding simultaneously one molecule of trypsin and one molecule of chymotrypsin.  相似文献   

13.
A 35-mer polypeptide isolated from the hemolymph of desert locust Schistocerca gregaria (SG) proved to be a canonical inhibitor of bovine trypsin (K(i) = 0.2 microM). Despite having a trypsin-specific arginine at the primary specificity P(1) site, it inhibits bovine chymotrypsin almost as well (K(i) = 2 microM). Furthermore, while the latter reactivity improves 10(4)-fold by the single replacement of P(1) Arg by Leu, changing P(1)' from Lys to Met only moderately improves trypsin affinity (K(i) = 30 nM). The apparent low compatibility to trypsin, however, is not observed vs two arthropodal trypsins: SG peptides with P(1) Arg inhibit crayfish and shrimp trypsins with K(i) values in the picomolar range. This unprecedented high discrimination between orthologous enzymes is postulated to derive from flexibility differences in the protein-protein interaction. The more than four orders of magnitude phylum selectivity makes these peptides prospective candidates for agricultural use.  相似文献   

14.
Abstract

Hydrolysis studies of photo-switchable N-maleyl-amino acid-(4-phenylazophenyl) esters of Ala, Gly, Met, Phe, and Pro were performed using the proteases trypsin and chymotrypsin. It has been found out that the cis-isomers were hydrolyzed faster than the trans-isomers. In dependence of the amino acid in the P1 position the velocity graduation is Phe?>?Met?>?Ala?>?Gly?>?Pro for trypsin and Phe???Met?>?Ala?>?Gly?>?Pro for chymotrypsin for both isomers.  相似文献   

15.
Three isoinhibitors have been isolated to homogeneity from the C-serum of the latex of the rubber tree, Hevea brasiliensis clone RRIM 600, and named HPI-1, HPI-2a and HPI-2b. The three inhibitors share the same amino acid sequence (69 residues) but the masses of the three forms were determined to be 14,893+/-10, 7757+/-5, and 7565+/-5, respectively, indicating that post-translational modifications of the protein have occurred during latex collection. One adduct could be removed by reducing agents, and was determined to be glutathione, while the other adduct could not be removed by reducing agents and has not been identified. The N-termini of the inhibitor proteins were blocked by an acetylated Ala, but the complete amino acid sequence analysis of the deblocked inhibitors by Edman degradation of fragments from endopeptidase C digestion and mass spectrometry confirmed that the three isoinhibitors were derived from a single protein. The amino acid sequence of the protein differed at two positions from the sequence deduced from a cDNA reported in GenBank. The gene coding for the inhibitor is wound-inducible and is a member of the potato inhibitor I family of protease inhibitors. The inhibitor strongly inhibited subtilisin A, weakly inhibited trypsin, and did not inhibit chymotrypsin. The amino acid residues at the reactive site P(1) and P(1)(') were determined to be Gln45 and Asp46, respectively, residues rarely reported at the reactive site in potato inhibitor I family members. Comparison of amino acid sequences revealed that the HPI isoinhibitors shared from 33% to 55% identity (50-74% similarity) to inhibitors of the potato inhibitor I family. The properties of the isoinhibitors suggest that they may play a defensive role in the latex against pathogens and/or herbivores.  相似文献   

16.
The protein Streptomyces subtilisin inhibitor, SSI, efficiently inhibits a bacterial serine protease, subtilisin BPN'. We recently demonstrated that functional change in SSI was possible simply by replacing the amino acid residue at the reactive P1 site (methionine 73) of SSI. The present paper reports the additional effect of replacing methionine 70 at the P4 site of SSI (Lys73) on inhibitory activity toward two types of serine proteases, trypsin (or lysyl endopeptidase) and subtilisin BPN'. Conversion of methionine 70 at the P4 site of SSI(Lys73) to glycine or alanine resulted in increased inhibitory activity toward trypsin and lysyl endopeptidase, while replacement with phenylalanine weakened the inhibitory activity toward trypsin. This suggests that steric hindrance at the P4 site of SSI(Lys73) is an obstacle for its binding with trypsin. In contrast, the same P4 replacements had hardly any effect on inhibitory activity toward subtilisin BPN'. Thus the subsite structure of subtilisin BPN' is tolerant to these replacements. This contrast in the effect of P4 substitution might be due to the differences in the S4 subsite structures between the trypsin-like and the subtilisin-like proteases. These findings demonstrate the importance of considering structural complementarity, not only at the main reactive site but also at subsites of a protease, when designing stronger inhibitors.  相似文献   

17.
We report our progress in understanding the structure-function relationship of the interaction between protein inhibitors and several serine proteases. Recently, we have determined high resolution solution structures of two inhibitors Apis mellifera chymotrypsin inhibitor-1 (AMCI-I) and Linum usitatissimum trypsin inhibitor (LUTI) in the free state and an ultra high resolution X-ray structure of BPTI. All three inhibitors, despite totally different scaffolds, contain a solvent exposed loop of similar conformation which is highly complementary to the enzyme active site. Isothermal calo- rimetry data show that the interaction between wild type BPTI and chymotrypsin is entropy driven and that the enthalpy component opposes complex formation. Our research is focused on extensive mutagenesis of the four positions from the protease binding loop of BPTI: P1, P1', P3, and P4. We mutated these residues to different amino acids and the variants were characterized by determination of the association constants, stability parameters and crystal structures of protease-inhibitor complexes. Accommodation of the P1 residue in the S1 pocket of four proteases: chymotrypsin, trypsin, neutrophil elastase and cathepsin G was probed with 18 P1 variants. High resolution X-ray structures of ten complexes between bovine trypsin and P1 variants of BPTI have been determined and compared with the cognate P1 Lys side chain. Mutations of the wild type Ala16 (P1') to larger side chains always caused a drop of the association constant. According to the crystal structure of the Leu16 BPTI-trypsin complex, introduction of the larger residue at the P1' position leads to steric conflicts in the vicinity of the mutation. Finally, mutations at the P4 site allowed an improvement of the association with several serine proteases involved in blood clotting. Conversely, introduction of Ser, Val, and Phe in place of Gly12 (P4) had invariably a destabilizing effect on the complex with these proteases.  相似文献   

18.
A number of monocyclic SFTI-1 analogues modified in the conserved inhibitor P1' position by Pro, its L-hydroxyproline (Hyp) derivative as well as mimetics with different ring size were synthesized by the solid-phase method. Replacement of Ser6 by Pro, Hyp, and a four-member ring, L-azetidine-2-carboxylic acid (Aze), retained trypsin or chymotrypsin inhibitory activity. The determined association equilibrium constants of these analogues with a cognate enzyme were about two orders of magnitude lower than those obtained for ones with conserved Ser6. In all analogues, with the exception of one, [Phe5,Aze6]SFTI-1, the P1-P1' reactive site remained intact. The results provide first evidence that the conserved Ser in the P1' position of Bowman-Birk inhibitors can be successfully replaced by an amino acid with a secondary amine group.  相似文献   

19.
Alpha-1 antitrypsin (alpha 1AT) is an efficient inhibitor of the human neutrophil proteases, elastase and cathepsin G. The reactive centre P1 residue (Met358) of alpha 1AT is important in defining the specificity of inhibition; furthermore, oxidation of this residue results in a loss of inhibitor activity. There is evidence that oxidative inactivation of alpha 1AT may be involved in the pathogenesis of pulmonary emphysema associated with cigarette smoking. We have studied the effect of a series of amino acid replacements at the active centre on the inhibition properties of alpha 1AT. The mutant proteins were produced in E. coli following in vitro mutagenesis of the alpha 1AT cDNA. Alpha-1-AT (Ile358), (Ala358) and (Val358) were efficient inhibitors of both neutrophil and pancreatic elastase, but not cathepsin G. Alpha-1-AT (Ala356, Val358) and alpha 1AT (Phe358) were specific for pancreatic elastase and cathepsin G respectively. Alpha-1-AT (Leu358) inhibited both neutrophil elastase and cathepsin G. These data show that, for effective inhibition, a potential cleavage site for the protease must be displayed at the alpha 1AT active centre. In each case, replacement of Met358 led to resistance to oxidative inactivation. Since alpha 1AT (Leu358) inhibits both neutrophil proteases and is resistant to oxidation, this variant may be of increased potential for the therapy of destructive lung disorders.  相似文献   

20.
Three protease inhibitors (OTI-1-3) have been purified from onion (Allium cepa L.) bulbs. Molecular masses of these inhibitors were found to be 7,370.2, 7,472.2, and 7,642.6 Da by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. Based on amino acid composition and N-terminal sequence, OTI-1 and -2 are the N-terminal truncated proteins of OTI-3. All the inhibitors are stable to heat and extreme pH. OTI-3 inhibited trypsin, chymotrypsin, and plasmin with dissociation constants of 1.3 x 10(-9) M, 2.3 x 10(-7) M, and 3.1 x 10(-7) M, respectively. The complete amino acid sequence of OTI-3 showed a significant homology to Bowman-Birk family inhibitors, and the first reactive site (P1) was found to be Arg17 by limited proteolysis by trypsin. The second reactive site (P1) was estimated to be Leu46, that may inhibit chymotrypsin. OTI-3 lacks an S-S bond near the second reactive site, resulting in a low affinity for the enzyme. The sequence of OTI-3 was also ascertained by the nucleotide sequence of a cDNA clone encoding a 101-residue precursor of the onion inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号