首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
由纳米TiN颗粒、水基液以及分散剂可制备得一种水基纳米TiN流体的溶液,并针对不同制备条件下溶液中纳米颗粒在水基液中的分散稳定性进行了研究.通过改变实验制备过程中机械搅拌和超声波分散时间、分散介质水基液的种类、分散剂的质量分数,制备出不同分散程度的溶液,然后采用沉降稳定性分析和流变特性分析对得到的溶液进行分散稳定性的评价分析.结果表明,上述因素均会对溶液的分散稳定性有一定程度的影响.过短的搅拌分散时间不利于纳米TiN流体介质中颗粒的分散;在不同分散介质中分散时,去离子水的分散效果最佳;适量质量分数的分散剂可以改善纳米流体的分散稳定性.基于上述分析提出了纳米TiN颗粒在水基液中的分散理论.  相似文献   

2.
聚乙烯亚胺对纳米SiO2空心颗粒分散行为的影响   总被引:4,自引:0,他引:4  
采用在制备过程中添加聚电解质型分散剂聚乙烯亚胺(PEI)和在制备好的纳米SiO2空心颗粒水悬浮液中添加PEI并球磨这两种方法对纳米SiO2空心颗粒进行分散,并对这两种方法进行了比较,最后采用以PEI作为分散剂,利用球磨工艺,对已制备的纳米SiO2空心颗粒水悬浮液进行分散的方法,研究了PEI在纳米SiO2空心颗粒表面的吸附行为及水悬浮液的分散稳定性.结果表明,PEI在纳米SiO2空心颗粒表面的吸附提高了颗粒间的排斥势能,改善了纳米SiO2空心颗粒的团聚问题及其悬浮液的稳定性.并阐明了加入PEI后纳米SiO2空心颗粒表面ζ电位的变化趋势、不同pH值下PEI在纳米SiO2空心颗粒表面的吸附量与其加入量的关系等.  相似文献   

3.
通过多重光散射法研究了纳米TiO2水分散体系稳定性的影响因素。文章探讨了分散剂类型、pH和NaCl质量浓度对水分散体系稳定性的影响规律以及分散剂对纳米TiO2颗粒在水分散液中粒径变化、沉降的微观作用特性。结果表明:纳米TiO2颗粒的粒径在100~200 nm时易相互吸附团聚沉降,分散剂会在纳米TiO2颗粒表面吸附形成双电层,产生更大Zeta电位负值,增强颗粒间的排斥作用,减缓粒径增长和发生沉降的作用,从而提升分散液稳定性;纳米TiO2颗粒的较佳分散条件为:w(六偏磷酸钠)=0.05%,pH=9~10且不加电解质NaCl;多重光散射法与传统的吸光度测试实验所得结果基本相符。  相似文献   

4.
塔河油田稠油集输多采用加热输送方式,传统水套加热炉加热传热过程效率欠佳,造成不必要的能源消耗,为此,将传热性能优良的纳米流体引入到原油加热输送系统中。结果表明,纳米颗粒均匀悬浮于基液之中,且不发生颗粒的团聚,充分利用纳米颗粒的微尺度效应特征,提高了纳米流体在原油加热系统中传热性能。同时,从分散剂浓度、分散剂种类、超声功率、超声时间及颗粒添加量方面对纳米流体稳定性影响进行了定量研究,氧化铝纳米流体分散剂的类型宜选用0. 06%SHP分散剂,二氧化硅和二氧化钛纳米流体宜选用0. 125%CTAB;超声功率在375~450 W之间时,颗粒的分散性最优;超声时间增长,超声能量足以抵抗颗粒团聚的静电吸引力,颗粒的分散效果得到改善;颗粒质量分数不得超过0. 75%。塔河油田原油输送系统使用纳米流体,热能利用率提高了16. 8%。  相似文献   

5.
纳米TiO2颗粒在制备和应用过程中极易团聚,解决其分散问题是纳米TiO2颗粒在制冷系统中应用的基础和前提. 本工作利用目测沉降观察、分光光度计吸收测量法和激光粒度分析法,实验研究了纳米TiO2颗粒在制冷工质中的分散特性. 结果表明,纳米TiO2颗粒在制冷剂中分散较稳定,制冷剂介电常数和极性是主要的影响因素;Span-80可以作为纳米TiO2颗粒在制冷剂中的分散剂;温度对纳米TiO2颗粒在制冷剂中的分散稳定性影响明显. 研究结果可为纳米TiO2颗粒在制冷系统中的应用研究提供基础数据.  相似文献   

6.
龚俊  徐慧文  宁会峰  赵旭 《陶瓷》2016,(4):30-33
微滴喷射自由成形3D打印技术应用于陶瓷义齿冠的直接制作工艺中,高固相、低粘度、高可塑性的陶瓷浆料是成形的关键,其中使陶瓷粉体颗粒具有良好的分散性,是获得高性能陶瓷浆料的前提条件。使用聚甲基丙烯酸铵作为分散剂,研究了钇稳定纳米ZrO_2浆料分散系在不同的pH值和分散剂用量下的粘度和沉降高度变化情况,并分析其影响机理。结果表明:聚甲基丙烯酸铵能有效地提高钇稳定纳米ZrO_2粉体颗粒的分散性;在pH=9、分散剂加入量为粉体颗粒的1.5wt%时,可获得最佳分散效果。  相似文献   

7.
文章探讨了不同分散剂在分散纳米金刚石颗粒时的作用机制,包括静电位阻、空间位阻、静电-空间位阻协同机制;同时研究了不同分散剂、用量、分散时间以及搅拌时间等对纳米金刚石分散的影响。研究结果表明,在高能机械化学处理过程中,在机械力和表面活性剂、无机电解质等物质的共同作用下,纳米金刚石的表面官能团组成发生了明显的变化,从而导致颗粒表面电性发生改变,颗粒间斥力增大,颗粒更加亲水,从而使得颗粒可以在体系中保持稳定分散。  相似文献   

8.
通过多重光散射法研究了纳米Ti O_2水分散体系稳定性的影响因素。探讨了分散剂类型、p H和Na Cl质量浓度对水分散体系稳定性的影响规律以及分散剂对纳米Ti O_2颗粒在分散液中粒径变化、沉降的微观作用特性。结果表明:纳米Ti O_2颗粒的粒径在100~200 nm时易相互吸附团聚沉降,分散剂会在纳米Ti O_2颗粒表面吸附形成双电层,产生更大的Zeta电位负值,增强颗粒间的排斥作用,减缓粒径增长和颗粒沉降,从而提升分散液的稳定性;纳米Ti O_2颗粒的较佳分散条件为:w(六偏磷酸钠)=0.05%,p H=9~10且不加电解质Na Cl;多重光散射法与传统的吸光度测试实验所得结果基本相符。  相似文献   

9.
本文利用形成纳米ZrO2粉体的前驱体的化学结构特征设计合成一种能与之发生螯合作用的新型分散剂(简称为D1),能够有效地减小颗粒尺寸,提高分散效果.采用螯合分散剂制备纳米氧化锆的最佳工艺条件为ZrOCl2·8H2O浓度1.0 mol/L,D1分散剂用量1%(ω),沉淀pH值10.0,陈化时间12 h,锻烧温度750℃,锻烧时间1 h.以稀土元素Y作晶型稳定剂,成功制备粒径超细(5~8 nm),均匀分散的四方纳米ZrO2粉体(3Y-TZP).螯合分散剂同十六烷基三甲基氯化铵,TritonX-100等常用分散剂相比,对纳米ZrO2的分散性能和颗粒尺寸的改善效果最为显著,明显优于其它几种分散剂.结果表明根据纳米粉体的化学结构设计特定的分散剂是解决纳米颗粒团聚问题的重要途径.  相似文献   

10.
纳米石墨片在有机溶剂中的分散工艺研究   总被引:1,自引:0,他引:1  
采用超声分散法制备了稳定的纳米石墨片有机溶剂分散液.考察了多种分散剂、分散剂含量以及树脂含量和超声时间对纳米石墨片分散效果的影响,并用扫描电镜及光学显微镜研究纳米石墨片在有机溶剂中的分散状态.实验结果表明;加入不同分散剂得到的纳米石墨片分散液稳定性有很大差别,Disperbyk一163是比较理想的分散剂.纳米石墨片分散液的稳定性随着分散剂含量的增加先升高后降低,随着树脂含量的增加及超声时间的延长而升高.  相似文献   

11.
纳米Al2O3/环氧树脂复合材料的制备及性能   总被引:11,自引:1,他引:11  
在原位法制备纳米复合材料时,要使纳米粒子在树脂中分散均匀,必须首先获得稳定的单体悬浮体系。基于这一原理,本文通过对纳米Al2O3表面改性即选择合适的分散剂,获得稳定的纳米Al2O3/丙酮悬浮液,然后将环氧树脂溶解于其中,制得纳米Al2O3/环氧树脂复合材料。运用透射电子显微镜,观察了纳米Al2O3在环氧基体中的分散情况。分析并讨论了纳米Al2O3含量对该复合材料力学性能的影响。结果表明:利用稳定的悬浮体系能制得分散较为均匀的纳米复合材料,在纳米Al2O3含量为5%的情况下,纳米复合材料的力学性能达到最优。  相似文献   

12.
综合近几年来纳米ZrO2粉体在液体介质中分散的研究情况,发现对纳米ZrO2粉体的分散研究主要集中在6个方面:pH值、盐离子(离子强度)、分散剂、固含量、液体介质和分散剂在ZrO2颗粒表面的吸附.通过这些方面的研究,人们能够得到颗粒分散均匀、不聚沉、流动性好、固含量高的ZrO2悬浮液,这就为采用胶态成型方法制备纳米ZrO2陶瓷及其复合材料奠定了基础.  相似文献   

13.
纳微米磁性复合粒子在放射治疗中的应用研究进展   总被引:4,自引:0,他引:4  
磁靶向放射治疗技术将纳微米技术和临床放疗技术有机地结合起来,可以满足适形调强的放射治疗要求。介绍了磁靶向放射性纳微米复合粒子的最新研究成果,概括了附载放射性核素的纳微米磁性复合粒子的制备方法,如溶剂蒸发法、热熔法、包覆法、双壁包囊法等,从表面修饰效果、电泳性能等方面分析了磁性载体的生物物理化学性质,并总结了磁靶向放射性纳微米复合粒子在体外和生物体内的初步研究成果,最后对该项技术的发展前景提出了展望。  相似文献   

14.
在PEG溶液中加入纳米ZnO以及表面修饰的ZnO,观察纳米粒子对PEG结晶的影响。通过透射偏光显微镜进行观察,发现纳米ZnO的加入改变了PEG的结晶形貌,随着纳米粒子表面羧基含量的增加,结晶形貌按照树晶—大球晶—小球晶的规律变化。通过FTIR表明在热作用下纳米粒子表面的羧基会与PEG的端羟基发生酯化反应,使纳米ZnO可以稳定的存在于PEG溶液中,为球晶的形成提供了成核点。  相似文献   

15.
纳米氧化锆在水中分散性研究   总被引:10,自引:1,他引:10  
鉴于粉体分散对无机膜制备具有重要意义,研究了添加不同分散剂及其加入量对纳米氧化锆粉在水中的分散性,以及分散性与溶液pH值的关系。结果表明:悬浮液的分散性能受到分散剂及其加入量和pH值的影响,不同的分散剂在各自的加入范围内有其最佳加入量。通过对粒径和zeta电位分析,考察含分散剂时pH值对纳米氧化锆粉的分散性能,从中优选最佳pH值的范围。  相似文献   

16.
This study investigates the dispersions of 1 wt.% C.I. pigment violet 23 particles in propylene glycol monomethyl ether acetate (PGMEA) using a supercritical fluid-assisted dispersion process (SFAD). The favorable formulation of dispersants is a blend of 40% AJISPER PB821 and 10% FC-4430 in a PGMEA medium. The SFAD processes holding at the supercritical state are good for improving dispersion. Under favorable conditions, 328.2 K and 20 MPa, the mean size of pigment dispersoid with blended dispersants in PGMEA is as small as 175 nm that meets the required range of 100-200 nm in industrial applications. The TGA analyses indicate the adsorbed amount of blended dispersants (40% PB821 and 10% 4430) on the surface of pigment particles in the PGMEA medium is about 1.77 mg/m2. Thus, the transmittances, color analyses, and TEM images of pigment dispersoids prove that the SFAD process can disperse pigment particles in PGMEA.  相似文献   

17.
陈廷益  田娟 《聚氯乙烯》2009,37(1):14-16
比较了聚乙烯醇、十二烷基苯磺酸钠、聚丙烯酰胺、乳化剂TY-01作为纳米碳酸钙的乳化剂时的乳化效果;选用乳化剂TY-01时,确定了其最佳用量以及搅拌、超声波振荡的工作参数;研究了乳化液固含量对黏度和pH值的影响;通过投射电镜观察了纳米碳酸钙的分散情况。结果表明:①4种乳化剂中,乳化剂TY—01的乳化效果最好,其与纳米碳酸钙的最佳质量比为1:20;②配制乳化液时,搅拌转速应大于800r/min,提高搅拌转速、进行超声波振荡可以缩短搅拌时间;③随着乳化液固含量的增加,乳化液的pH值基本不变,乳化液黏度急剧增大;④添加乳化剂的纳米碳酸钙在水中分散均匀,且粒度均匀,平均为50nm。  相似文献   

18.
通过选取几种无机类、高分子类分散剂对纳米TiO2 粉体在水中的分散性能进行了比较。研究结果表明 ,加入的分散剂用量不同 ,分散效果有很大差别 ,不足或过量的分散剂影响了粉体的分散率。将两类分散剂按一定的比例复配使用 ,分散效果显著提高。通过透射电子显微镜 (TEM )观察纳米TiO2 的微观形貌 ,并对TEM照片进行了分析  相似文献   

19.
选用ZrO2纳米微粒悬浮于镀锌电解液中,并加入表面活性剂,制备了复合镀液.通过沉降试验研究了分散剂、分散方式、镀液pH及加料顺序对ZrO2纳米微粒在镀液中分散稳定性的影响.结果表明,在镀液中加入阳离子表面活性剂,通过超声分散并采用加料顺序1),可以得到分散性较好的复合镀液.  相似文献   

20.
纳米四氧化三铁化学法制备及其应用   总被引:2,自引:0,他引:2  
纳米磁性材料作为一种新兴功能材料,由于其独特的物理化学性质,使其在物理、化学等方面表现出与常规磁性材料不同的特殊用途。纳米四氧化三铁就是其中一种多功能磁性材料,在磁记录材料、磁流体、催化、医药、颜料等方面具有广泛的应用。综述了近年来纳米磁性四氧化三铁的液相化学制备方法:共沉淀法、微乳液法、溶胶-凝胶法、溶剂热法等的研究现状以及最新的研究成果,对上述各种制备方法的优缺点进行了分析和比较。介绍了磁性纳米四氧化三铁在磁性液体、磁记录材料、催化、生物医药、微波吸收材料等方面的具体应用以及发展趋势,并提出其今后发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号