首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photovoltaic devices were assembled using a conducting polymer; poly (3-thiophenemalonic acid) sensitized TiO2 electrodes and an electrolyte containing I3/I redox couple. This cell exhibited a short-circuit photocurrent (Jsc) of 6.65 mA cm−2, an open circuit voltage (Voc) of 355 mV and an efficiency of 1.5% under the illumination of 100 mW cm−2 (AM 1.5). Addition of an ionic liquid, 1-methyl 3-n-hexylimidazolium iodide, into the electrolyte led to an improvement in the cell performances, achieving an overall efficiency of 1.8% under the same illumination. The average cell characteristics of the later devices are , with a fill factor of 0.65.  相似文献   

2.
An organic–inorganic composite gel electrolyte based on TiO2 gel, γ-butyrolactone (γ-BL) and N-methyl pyridine iodide was prepared by the sol–gel method. This gel electrolyte shows high ambient ionic conductivity of 7.63 mS cm−1, which is close to the data of liquid electrolyte with the same organic iodide salt and γ-butyrolactone. Based on the gel electrolyte, a quasi-solid-state dye-sensitized solar cell was fabricated and the highest overall energy conversion efficiency of light-to-electricity of 3.06% was achieved under irradiation of 60 mW cm−2.  相似文献   

3.
We have investigated the influence of electrolyte composition on the photovoltaic performance of a dye-sensitized nanocrystalline TiO2 solar cell (DSSC) based on a Ru(II) terpyridyl complex photosensitizer (the black dye). We have also spectroscopically investigated the interaction between the electrolyte components and the adsorbed dye. The absorption peaks attributed to the metal-to-ligand charge transfer transitions of the black dye in solution and adsorbed on a TiO2 film, were red-shifted in the presence of Li cations, which led to an expansion of the spectral response of the solar cell toward the near-IR region. The photovoltaic performance of the DSSC based on the black dye depended remarkably on the electrolyte composition. We developed a novel efficient organic liquid electrolyte containing an imidazolium iodide such as 1,2-dimethyl-3-n-propylimidazolium iodide or 1-ethyl-3-methylimidazolium iodide (EMImI) for a DSSC based on the black dye. A high solar energy-to-electricity conversion efficiency of 9.2% (Jsc=19.0 mA cm−2, Voc=0.67 V, and FF=0.72) was attained under AM 1.5 irradiation (100 mW cm−2) using a novel electrolyte consisting of 1.5 M EMImI, 0.05 M iodine, and acetonitrile as a solvent with an antireflection film.  相似文献   

4.
Perovskite-type La0.8Sr0.2ScyMn1−yO3−δ oxides (LSSMy, y = 0.0–0.2) were synthesized and investigated as cathodes for solid-oxide fuel cells (SOFCs) containing a stabilized zirconia electrolyte. The introduction of Sc3+ into the B-site of La0.8Sr0.2MnO3−δ (LSM) led to a decrease in the oxides’ thermal expansion coefficients and electrical conductivities. Among the various LSSMy oxides tested, LSSM0.05 possessed the smallest area-specific cathodic polarization resistance, as a result of the suppressive effect of Sc3+ on surface SrO segregation and the optimization of the concentration of surface oxygen vacancies. At 850 °C, it was only 0.094 Ω cm2 after a current passage of 400 mA cm−2 for 30 min, significantly lower than that of LSM (0.25 Ω cm2). An anode-supported cell with a LSSM0.05 cathode demonstrated a peak power density of 1300 mW cm−2 at 850 °C. The corresponding value for the cell with LSM cathode was 450 mW cm−2 under the same conditions. The LSSM0.05 oxide may potentially be a good cathode material for IT-SOFCs containing doped zirconia electrolytes.  相似文献   

5.
Solar cells using iodine-doped polythiophene–porphyrin polymer films   总被引:1,自引:0,他引:1  
Wet-type organic solar cells containing 5,10,15,20-3-tetrathienylporphyrin (TThP) and polythiophene (PTh) films were fabricated. The TThP/PTh film was prepared on indium-tin-oxide (ITO) glass using an electrochemical polymerization method in an n-Bu4NPF6/CH2Cl2 solution. It was found that a small amount of iodine doping of the film improved the incident photon-to-electron conversion efficiency (IPCE) of a solar cell consisting of a TThP/PTh film and an aqueous electrolyte. A HOMO level measurement suggested that a modified HOMO level of the low iodine-doped TThP/PTh film allowed a fast electron transfer from PTh to a porphyrin moiety. To obtain further improvement, a sandwich-type solar cell using a 5% (w/w) aqueous solution of acetonitrile containing 0.05 M iodine and 0.5 M lithium iodide as an electrolyte was then fabricated. The solar cell absorbed light in the 300–800 nm wavelength range, converting this to a cathodic photocurrent with a maximum IPCE of 32% at 430 nm under irradiation of 5.0×1014 photon cm−2 s−1. This value is about 10 times higher than that of the solar cells using an aqueous electrolyte. The total energy conversion efficiency (η) of the solar cell under simulated sunlight reached 0.12% for 2.59 mW cm−2 at AM1.5 and 0.05% for 100 mW cm−2 at air mass 1.5.  相似文献   

6.
The photoelectrochemical properties of a solid-state photoelectrochemical cell (PEC) based on poly(3-hexylthiophene), P3HT, and an ion-conducting polymer electrolyte, amorphous poly(ethylene oxide), POMOE, complexed with I3/I redox couple has been constructed and studied. The current–voltage characteristics in the dark and under white light illumination, transient photocurrent and photovoltage studies, photocurrent action spectra for front and back side illuminations and an open-circuit voltage and short-circuit current dependence on light intensity have been studied. An open-circuit voltage of 130 mV and a short-circuit current of 0.47 μA cm−2 were obtained at light intensity of 100 mW/cm2. IPCE% of 0.024% for front side illumination (ITO/PEDOT) and IPCE% of 0.003% for backside illumination (ITO/P3HT) were obtained.  相似文献   

7.
ZnO-doped BaZr0.85Y0.15O3−δ perovskite oxide sintered at 1500 °C has bulk conductivity of the order of 10−2 S cm−1 above 650 °C, which makes it an attractive proton-conducting electrolyte for intermediate-temperature solid oxide fuel cells. The structure, morphology and electrical conductivity of the electrolyte vary with sintering temperature. Optimal electrochemical performance is achieved when the sintering temperature is about 1500 °C. Cathode-supported electrolyte assemblies were prepared using spin coating technique. Thin film electrolytes were shown to be dense using SEM and EDX analyses.  相似文献   

8.
A stable, easily sintered perovskite oxide BaCe0.5Zr0.3Y0.16Zn0.04O3−δ (BCZYZn) as an electrolyte for protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode was investigated. The BCZYZn perovskite electrolyte synthesized by a modified Pechini method exhibited higher sinterability and reached 97.4% relative density at 1200 °C for 5 h in air, which is about 200 °C lower than that without Zn dopant. By fabricating thin membrane BCZYZn electrolyte (about 30 μm in thickness) on NiO–BCZYZn anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.00 V, a maximum power density of 236 mW cm−2, and a low polarization resistance of the electrodes of 0.17 Ω cm2 were achieved at 700 °C. This investigation indicated that proton conducting electrolyte BCZYZn with BSZF perovskite cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

9.
Cd-rich CdxHg1 − xTe films have been electrodeposited under potentiostatic conditions on conducting glass and Ti substrates from an acidic solution containing the respective ions as Cd2+:Hg2+:HTeO2+ = 100:1:2. Six films one after another have been prepared from a single electrochemical cell. EDAX analysis of the air annealed films show decreasing Hg content in the deposit as the number of film preparation increases. SEM analysis indicate undulatory surface with Hg-rich clusters at the top surface. XRD analysis indicate the presence of CdxHg1 − xTe along with . The CdxHg1 − xTe alloy formation have been confirmed from Raman shift measurements which change with composition, x. The as-deposited films are n-type but converts to p-type after air annealing. Spectral response measurements gave band gap values that change with Hg content in the deposit. Band gap values ranging from 1.1 eV to 1.45 eV have been estimated. Photoelectrochemical solar cells using polysulphide electrolyte have been fabricated which gave an open-circuit photovoltage and short-circuit photocurrent, respectively, as 325 mV and 5.5 mA/cm2 under 60 mW/cm2 intensity of illumination.  相似文献   

10.
By deliberately causing degradation of components in a dye-sensitized solar cell we have studied failure mechanisms of such cells. The dye, bis(tetrabutylammonium) cis–bis(thiocyanato)bis(2,2-bipyridine-4-carboxylic acid, 4-carboxylate)ruthenium(II), adsorbed to a nanostructured TiO2 film was studied with UV–VIS and IR spectroscopy after being exposed to visual and ultra-violet radiation, increased temperature, air, electrolyte, and water in the electrolyte. The thiocyanate ion ligand is lost in air, at temperatures equal to and above 135 °C, in electrolyte and possibly upon UV irradiation. The loss of the SCN ligand in air was accelerated under visual illumination. From working electrodes immersed in the electrolyte or in degraded complete solar cells it was observed that the absorption peak from the thiocyanate ion ligand at around 2100 cm−1 had broadened, blue-shifted and decreased. One failure mechanism is thus that the thiocyanate ion ligand is lost from the dye together with the electrolyte. Together with water in the electrolyte (5 v%) the SCN ligand is exchanged with H2O and/or OH. The ligand exchange between SCN and H2O/OH was accelerated under visual illumination.  相似文献   

11.
We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H2 as fuel. As cathode material, the perovskite Sr0.9K0.1FeO3−δ (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-μm thick pellet of the electrolyte La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) with Sr2MgMoO6 as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm−2 at 800°C and 850 mW cm−2 at 850 °C, with pure H2 as fuel. The electronic conductivity shows a change of regime at T ≈ 350 °C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 °C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC.  相似文献   

12.
Radiation damages due to 8 MeV electron irradiation in electrical properties of CuInSe2 thin films have been investigated. The n-type CuInSe2 films in which the carrier concentration was about 3×1016 cm−3, were epitaxially grown on a GaAs(0 0 1) substrate by RF diode sputtering. No significant change in the electrical properties was observed under the electron fluence <3×1016 e cm−2. As the electron fluence exceeded 1017 e cm−2, both the carrier concentration and Hall mobility slightly decreased. The carrier removal rate was estimated to be about 0.8 cm−1, which is slightly lower than that of III–V compound materials.  相似文献   

13.
Dense CuInSe2 of high quality, prepared by the fusion technique in evacuated quartz ampoule from stoichiometric melt, crystallizes in the chalcopyrite structure. Compositional analysis carried out by secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) indicates a uniform distribution of elements through the depth and a composition close to the stoichiometry. The diffuse reflectance spectrum gives a band gap at 0.94 eV. The electrical conductivity follows an Arrhenius-type law with activation energy of 23 meV in conformity with polarons hopping. Above 320 °C, CuInSe2 undergoes an irreversible oxidation. The thermal variation of the thermopower indicates p-type behavior attributed to copper deficiency and a hole mobility μ300 K of 0.133 cm2 V−1 s−1, thermally activated. In KCl media, the compound exhibits an excellent chemical stability with a corrosion rate of 8 μmol cm−2 month−1. The photo-electrochemical properties, investigated for the first time on the ingots, confirm the p-type conductivity. From the capacitance measurements, the flat band potential (Vfb=−0.62VSCE) and the holes density (NA=4×1017 cm−3) were determined. The valence band, located at 4.43 eV below vacuum, is made up of mainly Se orbital with little admixture of Cu character. The change of the electrolyte causes a variation in the potential Vfb (dVfb/dpH=−0.058 V pH−1) indicating strong OH adsorption. The fill factor in S2− media was found to be 0.54; such result was corroborated by semi-logarithmic plots.  相似文献   

14.
6×8 cm2 electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrolyte/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)0.81–TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5×10−5 S/cm for a lithium concentration of 0.3 g/15 ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (±2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (ΔOD=0.15) with a coloration efficiency increasing from 10 cm2/C (initial cycle) to 23 cm2/C (25,000th cycle).  相似文献   

15.
We have studied the influence of electrolytes on the photovoltaic performance of mercurochrome-sensitized nanocrystalline TiO2 solar cells using LiI, LiBr, and tetraalkylammonium iodides as the electrolyte. Short-circuit photocurrent density (Jsc) and open-circuit photovoltage (Voc) depended strongly on the electrolyte. Jsc of 3.42 mA cm−2 and Voc of 0.52 V were obtained for the LiI electrolyte and Jsc of 2.10 mA cm−2 and Voc of 0.86 V were obtained for the Pr4NI electrolyte. This difference in photovoltaic performance was due to the change in the conduction band level of the TiO2 electrode. Large Voc of 0.99 V was obtained for the LiBr electrolyte due to the large energy gap between the conduction band level of TiO2 and the Br/Br2 redox potential. Solar cell performance also depended strongly on organic solvent, suggesting that the physical properties of solvents such as Li ion conductivity and donor number affect photovoltaic performance.  相似文献   

16.
The composite cathode system is examined for suitability on a Ce0.9Gd0.1O2−δ electrolyte based solid oxide fuel cell at intermediate temperatures (500–700 °C). The cathode is characterized for electronic conductivity and area specific charge transfer resistance. This cathode system is chosen for its excellent thermal expansion match to the electrolyte, its relatively high conductivity (115 S cm−1 at 700 °C), and its low activation energy for oxygen reduction (99 kJ mol−1). It is found that the decrease of sintering temperature of the composite cathode system produces a significant decrease in charge transfer resistances to as low as 0.25 Ω cm2. The conductivity of the cathode systems is between 40 and 88 S cm−1 for open porosities of 30–40%.  相似文献   

17.
The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) anodes are modified using Ni(NO3)2 and/or Ce(NO3)3/(Sm,Ce)(NO3)x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (Pmax) at 850 °C is 198 mW cm−2 when dry H2 and air are used as the fuel and oxidant, respectively. When H2 is changed to CH4, the value of Pmax is 32 mW cm−2. After 8.9 wt.% Ni and 5.8 wt.% CeO2 are introduced into the LSCrM anode, the cell exhibits increased values of Pmax 432, 681, 948 and 1135 mW cm−2 at 700, 750, 800 and 850 °C, respectively, with dry H2 as fuel and air as oxidant. When O2 at 50 mL min−1 is used as the oxidant, the value of Pmax increases to 1450 mW cm−2 at 850 °C. When dry CH4 is used as fuel and air as oxidant, the values of Pmax reach 95, 197, 421 and 645 mW cm−2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.  相似文献   

18.
For the first time, the application of a molten salt, triethylamine hydroiodide (THI), as a supporting electrolyte was investigated for the dye-sensitized solar cells (DSSCs). Titanium dioxide (TiO2) electrode was modified by incorporation of high- and low-molecular weight poly(ethylene glycol) along with TiO2 nanoparticles of two different sizes (300 nm (30 wt%) and 20 nm (70 wt%)). The highest apparent diffusion coefficient (D) of 8.12×10−6 cm2 s−1 was obtained for I (0.5 M of THI) from linear sweep voltammetry (LSV). Short-circuit current density (Jsc) increases with the concentration of THI whereas open-circuit potential (Voc) remains the same. Optimum Jsc (19.28 mA cm−2) and Voc (0.7 V) with a highest conversion efficiency (η) of 8.45% were obtained for the DSSC containing 0.5 M of THI/0.05 M I2/0.5 M TBP in CH3CN. It is also observed that the Jsc and η of the DSSC mainly relates with the D values of I and charge-transfer resistances such as Rct1 and Rct2 operating along Pt/TiO2 electrolyte interface, obtained from LSV and electrochemical impedance spectroscopy (EIS). For comparison, tetraethylammonium iodide (TEAI) and LiI were also selected as supporting electrolytes. Though both the THI and TEAI have similar structures, replacement of one methyl group by hydrogen improves the efficiency of the DSSC containing the former electrolyte. Further, the DSSC containing THI exhibits higher Jsc and η than LiI (7.70%), from which it is concluded that THI may be used as an efficient and alternative candidate to replace LiI in the current research of DSSCs.  相似文献   

19.
In this study, binary ionic liquids (bi-IL) of imidazolium salts containing cations with different carbon side chain lengths (C = 2, 4, 6, 8) and anions such as iodide (I), tetrafluoroborate (BF4), hexafluorophosphate (PF6) and trifluoromethansulfonate (SO3CF3) were used as electrolytes in dye-sensitized solar cells (DSSCs). On increasing the side chain length of imidazolinium salts, the diffusion coefficients of I3 and the cell conversion efficiencies decreased; however, the electron lifetimes in TiO2 electrode increased. As for different anions, the cell which contains 1-butyl-3-methyl imidazolium trifluoromethansulfonate (BMISO3CF3) electrolyte has better performance than those containing BMIBF4 and BMIPF6. From the impedance measurement, the cell containing BMISO3CF3 electrolyte has a small charge transfer resistance (Rct2) at the TiO2/dye/electrolyte interface. Moreover, the characteristic frequency peak for TiO2 in the cell based on BMISO3CF3 is less than that of BMIBF4 and BMIPF6, indicating the cell with bi-IL electrolyte based on BMISO3CF3 has higher electron lifetime in TiO2 electrode. Finally, the solid-state composite was introduced to form solid-state electrolytes for highly efficient DSSCs with a conversion efficiency of 4.83% under illumination of 100 mW cm−2. The long-term stability of DSSCs with a solidified bi-IL electrolyte containing SiO2 nanoparticles, which is superior to that of a bi-IL electrolyte alone, was also presented.  相似文献   

20.
We report on the first monolithic, amorphous-silicon-based, photovoltaic-powered electrochromic window coating. The coating employs a wide band gap a-Si1−xCx : H n–i–p photovoltaic (PV) cell as a semitransparent power supply, and an LiyWO3/LiAlF4/V2O5 electrochromic (EC) device as an optical-transmittance modulator. The EC device is deposited directly on top of a PV device that coats a glass substrate. The a-Si1−xCx : H PV cell has a Tauc gap of 2.2 eV and a transmittance of 80% over a large portion of the visible light spectrum. We reduced the thickness of the device to about 600 Å while maintaining a 1-sun open-circuit voltage of 0.9 V and short-circuit current of 2 mA/cm2. By employing the LiAlF4 as the Li+ ion electrolyte, the parasitic electronic current through the device has been significantly reduced (<10 μA/cm2 under 1 V bleaching voltage). By properly controlling y and the thickness of each layer, the coloration and bleaching voltage of the EC device could be adjusted within the range of −0.6 to −1.3 V (coloring) and 0.1–0.6 V (bleaching) for compatibility with the underlying PV cell. Our prototype 16 cm2 PV/EC device modulates the transmittance by more than 60% over a large portion of the visible spectrum. Its color is pale yellow at bleached state and dark blue at colored state. The coloring and bleaching times of the electrochromic device are approximately 2 min under normal operating conditions (±1 V). The device is hermetically sealed for a long lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号