首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have identified five mutations in antithrombin by direct sequencing of exons amplified using polymerase chain reaction. Four of these mutations are associated with thrombosis, three cause type I antithrombin deficiency and one has features of a type II deficiency. The fifth variant appears to have no functional consequences. The type I mutations are in exon 2, exon 3b and exon 4. The first of these is a nonsense mutation causing substitution of a Tyr-->stop at position -16 within the secretion signal sequence. The second is a missense mutation resulting in the substitution Cys-->Ser at position 247. This disrupts the disulphide bond with Cys 430 leaving a free cysteine residue and the C-terminus unconstrained. The third type I mutation is an in-frame deletion resulting in the loss of Ile 186. This is a highly conserved residue in the serpin superfamily and will predictably result in the disruption of the F-helix. The fourth mutation, in exon 3a, results in the substitution of Ser 162 by Asn. This residue is sited in the E-helix and the replacement of the buried side chain of serine by the larger asparagine side chain will predictably cause structural perturbation. The last example, Val 415-->Asp, was an incidental finding as a follow up investigation of a nephrotic patient. Although one other member of the family also had the mutation there was no linked history of thrombotic disease.  相似文献   

2.
The genetic defect in a patient with hereditary type I protein S (PS) deficiency was investigated. All the exons and intron-exon junctions of the patient's PS gene were amplified by PCR and subjected to heteroduplex screening. Only the PCR product of exon 4 revealed heteroduplex bands. A novel nonsense mutation, Ser62 (TCA) to Stop (TGA) was found in exon 4. RT-PCR detected the aberrant mRNA in the patient's platelets, which was markedly reduced in amount and lacked the region of exon 4, suggesting that the nonsense mutation affected the mutated mRNA metabolism and induced exon skipping. The skipping of exon 4 causes an in-frame deletion of 29 amino acids which just construct the thrombin-sensitive region of the PS molecule. The loss of such an important domain as well as the quantitative decrease in the mutated mRNA appear to be responsible for the type I PS deficiency in this patient.  相似文献   

3.
von Willebrand disease (vWD) is a common, autosomally inherited, bleeding disorder caused by quantitative and/or qualitative deficiency of von Willebrand factor (vWF). We describe two families with a variant form of vWD where affected members of both families have borderline or low vWF antigen levels, normal vWF multimer patterns, disproportionately low ristocetin cofactor activity, and significant bleeding symptoms. Whereas ristocetin-induced binding of plasma vWF from affected members of both families to fixed platelets was reduced, botrocetin-induced platelet binding was normal. The sequencing of genomic DNA identified unique missense mutations in each family in the vWF exon 28. In Family A, a missense mutation at nucleotide 4105T --> A resulted in a Phe606Ile amino acid substitution (F606I) and in Family B, a missense mutation at nucleotide 4273A --> T resulted in an Ile662Phe amino acid substitution (I662F). Both mutations are within the large disulfide loop between Cys509 and Cys695 in the A1 domain that mediates vWF interaction with platelet glycoprotein Ib. Expression of recombinant vWF containing either F606I or I662F mutations resulted in mutant recombinant vWF with decreased ristocetin-induced platelet binding, but normal multimer structure, botrocetin-induced platelet binding, collagen binding, and binding to the conformation-sensitive monoclonal antibody, AvW-3. Both mutations are phenotypically distinct from the previously reported variant type 2MMilwaukee-1 because of the presence of normal botrocetin-induced platelet binding, collagen binding, and AvW-3 binding, as well as the greater frequency and intensity of clinical bleeding. When the reported type 2M mutations are mapped on the predicted three-dimensional structure of the A1 loop of vWF, the mutations cluster in one region that is distinct from the region in which the type 2B mutations cluster.  相似文献   

4.
A patient with progressive exercise intolerance, proximal weakness, and complex III deficiency in skeletal muscle had a missense mutation in the cytochrome b gene of mitochondrial DNA (G15762A). The mutation, which leads to the substitution of a highly conserved amino acid (G339E), was heteroplasmic (85%) in the patient's muscle and was not present in 100 individuals of different ethnic backgrounds. These data strongly suggest that this molecular defect is the primary cause of the myopathy.  相似文献   

5.
Branching enzyme (BE) belongs to the amylolytic family which contains four highly conserved regions. These regions are proposed to play an important role in catalysis as they are thought to be necessary for catalysis and/or binding the substrate. Only one arginine residue was found to be conserved in a catalytic center at the same position in all known sequences of BEs from various species as well as in the alpha-amylase enzyme family. In mBEII, a conserved Arg residue 384 is in catalytic region 2. We have used site-directed mutagenesis of the Arg-384 residue in order to study its possible role in BE. Previous chemical modification studies (H. Cao and J. Preiss, 1996, J. Prot. Chem. 15, 291-304) suggest that it may play a role in substrate binding. Replacement of Arg-384 by Ala, Ser, Gln, and Glu in the active site caused almost total inactivation. However, a conservative mutation of the conserved Arg-384 by Lys resulted in some residual activity, approximately 5% of the wild-type enzyme. The kinetics of the purified mutant R384K enzyme were investigated and no large effect on the Km of the substrate amylose for BE was observed. Thus, these results suggest that conserved Arg residue 384 in mBEII plays an important role in the catalytic function of BEs but may not be directly involved in substrate binding.  相似文献   

6.
We previously isolated a mutant cell that is the only mammalian cell reported to have a persistently low level of UDP-glucose. In this work we obtained a spontaneous revertant whose UDP-glucose level lies between those found in the wild type and the mutant cell. The activity of UDP-glucose pyrophosphorylase (UDPG:PP), the enzyme that catalyzes the formation of UDP-glucose, was in the mutant 4% and in the revertant 56% of the activity found in the wild type cell. Sequence analysis of UDPG: PP cDNAs from the mutant cell showed one missense mutation, which changes amino acid residue 115 from glycine to aspartic acid. The substituted glycine is located within the largest stretch of strictly conserved residues among eukaryotic UDPG:PPs. The analysis of the cDNAs from the revertant cell indicated the presence of an equimolar mixture of the wild type and the mutated mRNAs, suggesting that the mutation has reverted in only one of the alleles. In summary, we demonstrate that the G115D substitution in the Chinese hamster UDPG:PP dramatically impairs its enzymatic activity, thereby causing cellular UDP-glucose deficiency.  相似文献   

7.
In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution-binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.  相似文献   

8.
Factor XIII deficiency is an autosomal recessive bleeding disorder that is largely caused by various mutations in FXIII A-subunit gene. Characteristically, the patients lack both A-subunit activity and antigen in the circulation. Here we have analysed the consequences of four missense mutations (Met242-->Thr, Arg252-->Ile, Arg326-->Gln, Leu498 to Pro) and one stop mutation (Arg661-->Stop) in the FXIII A-subunit gene by expression in COS-cells. After transient transfection each mutant cDNA expressed mRNA at an equal level to the wild type FXIII. However, the mutant polypeptides accumulated in the cells in significantly reduced quantities and demonstrated only very low enzymatic activity. Analysis of immunoprecipitated metabolically labelled polypeptides demonstrated remarkable instability and intracellular degradation of all mutant FXIII proteins. These results verify the deleterious nature of the individual amino acid changes and confirm that protein instability and susceptibility to proteolysis are consequences of the mutations, as predicted from the three-dimensional model of crystallised FXIII A-subunit.  相似文献   

9.
Hereditary methaemoglobinaemia, caused by deficiency of NADH-cytochrome b5 reductase (b5R), has been classified into two types, an erythrocyte (type I) and a generalized (type II). We analysed the b5R gene of two Thai patients and found two novel mutations. The patient with type II was homozygous for a C-to-T substitution in codon 8 3 that changes Arg (CGA) to a stop codon (TGA), resulting in a truncated b5R without the catalytic portion. The patient with type I was homozygous for a C-to-T substitution in codon 178 causing replacement of Ala (GCG) with Val (GTG). To characterize effects of this missense mutation, we investigated enzymatic properties of mutant b5R (Ala 178 Val). Although the mutant enzyme showed normal catalytic activity, less stability and different spectra were observed. These results suggest that this substitution influenced enzyme stability due to the slight change of structure. In conclusion, the nonsense mutation led to type II because of malfunction of the truncated protein. On the other hand, the missense mutation caused type I, due to degradation of the unstable mutant enzyme with normal activities in patient's erythrocytes, because of the lack of compensation by new protein synthesis during the long life-span of erythrocytes.  相似文献   

10.
The expression system for human recombinant cystatin A has already been established to be a fusion protein with porcine adenylate kinase in Escherichia coli [Kaji et al. (1990) Biol. Chem. Hoppe-Seyler 371, Suppl., 145-150]. After cyanogen bromide cleavage of the fused protein expressed in E. coli, the cystatin portion could be readily isolated. The inhibitory activity of the obtained variant (Cyst A (2-98)) was found to be almost identical with that of the wild type, and thereafter a mutation was introduced into this variant (Ctst A(2-98)), called the standard variant. To elucidate the role of the Gly-4 residue, which is completely conserved in all cystatin species, this residue was substituted with 17 other amino acids by means of cassette mutagenesis. Thus 17 variants (Cyst A(2-98)[G4X]) obtained were examined as to their inhibitory activity towards papain. As the side chain of the substituted amino acid residue became more bulky, the inhibitory activity of the variant markedly decreased. Variants whose side chains were bulkier than a Val residue showed almost no inhibitory effect towards papain. Consequently, it was deduced that the large side chain of a substituted amino acid may cause steric hindrance, which may be responsible for the decrease in inhibitory activity. Thus, we could conclude that the 4th (Gly) residue on cystatin A must be small, because amino acids which existed on the N-terminal side of this residue could interact with a papain molecule.  相似文献   

11.
We noticed a Japanese male showed low serum butyrylcholinesterase (BCHE) activity on health examination. The phenotyping analysis revealed a reduced dibucaine number (DN) and an especially low fluoride number (FN), similar to an FS phenotype. A homozygous missense mutation, a T to A transversion at nucleotide 988, was identified in his BCHE gene. This mutation resulted in the replacement of leucine by isoleucine at codon 330 (L330I). DN and FN of recombinant BCHE(L330I) secreted by human fetal kidney cells were compared to recombinant wild-type(usual gene) BCHE and normal serum BCHE. These results showed this amino acid substitution of BCHE, Leu330 to Ile, really caused the abnormal DN and FN. We conclude that the BCHE L330I mutation is a fluoride-resistant gene, a Japanese type fluoride-resistant gene.  相似文献   

12.
13.
Three beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase (3 beta HSD) deficiency is a form of congenital adrenal hyperplasia characterized by severe impairment of steroid biosynthesis in the adrenals and gonads. To better understand the molecular basis of the phenotypic heterogeneity found in 3 beta HSD deficiency, we analyzed the structure of type I and II 3 beta HSD genes in a female patient with nonsalt-losing 3 beta HSD deficiency diagnosed at puberty. We directly sequenced DNA fragments generated by polymerase chain reaction amplification of the four exons, the exon-intron boundaries, and the 5'-flanking regions of each gene. No mutation was detected in the type I 3 beta HSD gene, which is the predominant species expressed in the placenta and peripheral tissues. We detected a novel missense mutation, Y254D, in one allele of the patient's type II 3 beta HSD gene, which is the almost exclusive type expressed in the adrenals and gonads. The influence of the Y254D mutation on enzymatic activity was assessed by analyzing the recombinant mutant enzyme generated by site-directed mutagenesis after its transient expression in COS-1 monkey kidney cells. Recombinant mutant type II 3 beta HSD enzyme carrying the Y254D substitution exhibits no detectable activity with C21 delta 5-steroid pregnenolone or C19 delta 5-steroid dehydroepiandrosterone used as substrate. The absence of restriction fragment length polymorphism by Southern blot analysis and the finding that all of the amplified DNA fragments possess the expected length suggest the absence of deletions, duplications, or re-arrangements in the other allele. A putative second mutation could be located farther than 1427 basepairs upstream of the initiation codon, thus potentially affecting the normal expression of this gene or within intronic regions, generating an alternative aberrant splicing site. These are possibilities that remain to be elucidated. The present findings, which describe the novel missense mutation Y254D in the human type II 3 beta HSD gene, provide useful information on the structure-activity relationships of the 3 beta HSD superfamily.  相似文献   

14.
We have sequenced the Streptomyces plicatus beta-N-acetylhexosaminidase (SpHex) gene and identified the encoded protein as a member of family 20 glycosyl hydrolases. This family includes human beta-N-acetylhexosaminidases whose deficiency results in various forms of GM2 gangliosidosis. Based upon the x-ray structure of Serratia marcescens chitobiase (SmChb), we generated a three-dimensional model of SpHex by comparative molecular modeling. The overall structure of the enzyme is very similar to homology modeling-derived structures of human beta-N-acetylhexosaminidases, with differences being confined mainly to loop regions. From previous studies of the human enzymes, sequence alignments of family 20 enzymes, and analysis of the SmChb x-ray structure, we selected and mutated putative SpHex active site residues. Arg162 --> His mutation increased Km 40-fold and reduced Vmax 5-fold, providing the first biochemical evidence for this conserved Arg residue (Arg178 in human beta-N-acetylhexosaminidase A (HexA) and Arg349 in SmChb) as a substrate-binding residue in a family 20 enzyme, a finding consistent with our three-dimensional model of SpHex. Glu314 --> Gln reduced Vmax 296-fold, reduced Km 7-fold, and altered the pH profile, consistent with it being the catalytic acid residue as suggested by our model and other studies. Asp246 --> Asn reduced Vmax 2-fold and increased Km only 1.2-fold, suggesting that Asp246 may play a lesser role in the catalytic mechanism of this enzyme. Taken together with the x-ray structure of SmChb, these studies suggest a common catalytic mechanism for family 20 glycosyl hydrolases.  相似文献   

15.
16.
The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli, a process that results from a translesion synthesis mechanism. The UmuD protein is activated for its role in mutagenesis by a RecA-facilitated autodigestion that removes the N-terminal 24 amino acids. A previous genetic screen for nonmutable umuD mutants had resulted in the isolation of a set of missense mutants that produced UmuD proteins that were deficient in RecA-mediated cleavage (J. R. Battista, T. Ohta, T. Nohmi, W. Sun, and G. C. Walker, Proc. Natl. Acad. Sci. USA 87:7190-7194, 1990). To identify elements of the UmuD' protein necessary for its role in translesion synthesis, we began with umuD', a modified form of the umuD gene that directly encodes the UmuD' protein, and obtained missense umuD' mutants deficient in UV and methyl methanesulfonate mutagenesis. The D39G, L40R, and T51I mutations affect residues located at the UmuD'2 homodimer interface and interfere with homodimer formation in vivo. The D75A mutation affects a highly conserved residue located at one end of the central strand in a three-stranded beta-sheet and appears to interfere with UmuD'2 homodimer formation indirectly by affecting the structure of the UmuD' monomer. When expressed from a multicopy plasmid, the L40R umuD' mutant gene exhibited a dominant negative effect on a chromosomal umuD+ gene with respect to UV mutagenesis, suggesting that the mutation has an effect on UmuD' function that goes beyond its impairment of homodimer formation. The G129D mutation affects a highly conserved residue that lies at the end of the long C-terminal beta-strand and results in a mutant UmuD' protein that exhibits a strongly dominant negative effect on UV mutagenesis in a umuD+ strain. The A30V and E35K mutations alter residues in the N-terminal arms of the UmuD'2 homodimer, which are mobile in solution.  相似文献   

17.
Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest multiprotein enzyme complex of the respiratory chain. The nuclear-encoded NDUFS8 (TYKY) subunit of complex I is highly conserved among eukaryotes and prokaryotes and contains two 4Fe4S ferredoxin consensus patterns, which have long been thought to provide the binding site for the iron-sulfur cluster N-2. The NDUFS8 cDNA contains an open reading frame of 633 bp, coding for 210 amino acids. Cycle sequencing of amplified NDUFS8 cDNA of 20 patients with isolated enzymatic complex I deficiency revealed two compound heterozygous transitions in a patient with neuropathologically proven Leigh syndrome. The first mutation was a C236T (P79L), and the second mutation was a G305A (R102H). Both mutations were absent in 70 control alleles and cosegregated within the family. A progressive clinical phenotype proceeding to death in the first months of life was expressed in the patient. In the 19 other patients with enzymatic complex I deficiency, no mutations were found in the NDUFS8 cDNA. This article describes the first molecular genetic link between a nuclear-encoded subunit of complex I and Leigh syndrome.  相似文献   

18.
Hereditary protein S deficiency is a risk factor for developing recurrent venous thromboembolic disease and is caused by a defect in the protein S 1 (PROS1) gene. Identification of the mutation in the PROS1 gene can overcome diagnostic uncertainty in family members with borderline protein S levels. We describe a novel nonisotopic method for molecular diagnosis of protein S deficiency, using fluorescein-labeled amplification and sequencing primers. As a first step, all exons of the PROS1 gene are selectively amplified, and heteroduplex analysis is performed. As a second step, all exons are analyzed by direct sequencing. Using this method, we have characterized the molecular defect in two Belgian families with hereditary protein S deficiency type I: a frameshift mutation in exon XIV (1881insTC) and a missense mutation caused by a T-to-C transition, resulting in substitution of Leu405 by Pro (L405P).  相似文献   

19.
Phosphorylase kinase (PHK) is a regulatory enzyme in glycogen metabolism. Mutations in the gene encoding the alpha subunit of PHK (PHKA2) have been shown to be responsible for X-linked liver glycogenosis (XLG). XLG, a frequent type of glycogen storage disease, is characterised by hepatomegaly and growth retardation. Two subtypes of XLG have been described: XLG type I patients have a clear-cut PHK deficiency in liver and blood cells, whereas XLG type II patients have a normal or residual activity. Here, we present clinical, biochemical and molecular findings on a liver glycogenosis patient in whom the diagnosis XLG II only became clear after enzyme assays in the liver and identification of the disease-causing mutation. A missense mutation replacing arginine at amino acid position 186 by histidine (R186H) was identified in the PHKA2 gene. Mutations of the same arginine residue have been previously found in at least four other unrelated XLG II patients. CONCLUSION: Arginine at position 186 of the alpha subunit seems to play an important role in the structure or the regulation of PHK. In patients with XLG having normal or residual PHK activity where XLG II is suspected, the identification of mutations in PHKA2 leads to the final classification.  相似文献   

20.
We have cloned human and murine DNase I-like cDNAs, termed LS-DNase, which are expressed at high levels in liver and spleen tissues. LS-DNase expression is highly specific to macrophage populations within these and other tissues. Mature LS-DNase from both species is a secreted, non-glycosylated protein containing 285 residues, with a calculated molecular mass of 33 kDa and a basic isoelectric point. Human and murine LS-DNase are highly conserved and share 83% identity. Sequence analysis reveals that LS-DNase shares 46% amino acid sequence identity with DNase I. However, several residues identified as important for interaction of human DNase I with actin are not conserved in both human and murine LS-DNase. Consistent with this observation, recombinant human LS-DNase possesses a DNA hydrolytic activity which, unlike DNase I, is not inhibited by G-actin. The existence of a family of DNase I-like molecules that have tissue-specific expression patterns and the possible role of a macrophage specific DNase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号