首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
塔中隆起原油特征与成因类型   总被引:21,自引:2,他引:19  
塔里木盆地塔中隆起油气性质多样、分布与成因复杂, 为揭示油气的特征与成因, 对塔中及外围104个原油样品进行了精细地球化学研究.依据单体烃碳同位素、特征生物标志物分析, 将塔中原油分为4种类型: (1) 寒武系成因原油, 具有较重正构烷烃单体烃碳同位素(-29.6‰~-29.1‰)、甲藻甾烷较发育及C27、C28、C29规则甾烷呈反“L”型或线型分布等特征; (2) 中、上奥陶统成因原油, 具有较轻的正构烷烃单体烃同位素(-34‰~-35.6‰)、甲藻甾烷等不太发育与C27、C28、C29规则甾烷呈“V”型分布等特征; (3) 富含含硫芳烃-二苯并噻吩原油, 主要分布于塔中4井区; (4) 混源油, 单体烃碳同位素特征界于Ⅰ、Ⅱ类原油之间, 是塔中最为主要的原油类型.油-油对比与油气性质分析表明, 塔中地区至少有两套主力烃源岩供烃.塔中部分原油生物标志物显示寒武系-下奥陶统成因特征, 而单体烃碳同位素却与中上奥陶统成因原油更为接近, 这种不同馏分的不一致现象系不同成因原油混源的结果, 反映单一应用生物标志物指标有其局限性.塔中油气性质具有分带、分块、分层特征, 反映叠合盆地多源、多期成藏、储层非均质性等多种特性.   相似文献   

2.
为恢复塔中地区油气成藏过程,利用改进的石油包裹体烃组分分析方法进行了详细的研究。结果表明塔中地区储层油和包裹体油的组分差异明显。包裹体油和下奥陶统储层油中伽马蜡烷和C28甾烷相对丰度较高,来源于寒武系-下奥陶统烃源岩,其他储层油中伽马蜡烷和C28甾烷相对丰度较低,来源于中-上奥陶统烃源岩。储层油的成熟度高于对应层位的包裹体油,表明高成熟度的石油再次充注。石炭系和志留系包裹体油和储层油中存在25-降藿烷系列,表明石油成藏后遭受了生物降解作用。恢复了塔中地区3期油气成藏过程,第1期和第2期分别为志留纪末期和二叠纪末期来源于寒武系-下奥陶统烃源岩的油气成藏,第3期为二叠纪末期来源于中-上奥陶统烃源岩的油气成藏。  相似文献   

3.
塔里木盆地海相油气源与混源成藏模式   总被引:3,自引:0,他引:3  
塔里木盆地油气源长期争论不休.采用单体烃同位素、包裹体成分与年代指示生物标志物等途径, 对塔里木盆地塔中、轮南典型油气藏进行了油气成因与混源成藏模式的研究.结果表明, 塔中、轮南绝大部分原油生物标志物与中上奥陶统烃源岩相似, 仅少部分原油显现与寒武系—下奥陶统烃源岩相近的特征, 但正构烷烃单体烃碳同位素分析表明, 原油绝大部分实质仍为混源油.塔中包裹烃成分分析进一步证实了原油的混源特性.利用同位素进行的混源定量结果表明, 塔中原油中寒武系—下奥陶统成因原油的混入量约为11%~100%(均值45%); 轮南地区约为11%~70%(均值36%), 表明寒武系—下奥陶统、中上奥陶统均为塔里木盆地的主力烃源岩.油气运移地化指标与地质条件的综合研究认为, 塔中地区断层是油气运移的重要通道, 塔中I号断层与斜交的走滑断层的交汇点是油气的主要注入点; 轮南地区侧向运移特征较明显.研究区存在调整型、多期充注型与原生型多种混源成藏模式.塔里木海相油气的普遍混源表明深层仍有油气勘探潜能.揭示海相混源油气成藏机制是指导塔里木海相油气勘探的关键.   相似文献   

4.
塔中421井和塔中402井石炭系油层2个原油样和8个油砂样连续抽提组分甾烷、萜烷分布特征和正构烷烃单体碳同位素组成具有明显的差异,具有不同的来源。塔中421井上石炭统3个油砂样自由态组分、束缚态组分和油气包裹体具有伽马蜡烷和C28甾烷相对含量高、正构烷烃单体碳同位素组成重的特征,划分为Ⅰ类原油,对比认为主要来源于寒武系-下奥陶统烃源岩。塔中421井和塔中402井上石炭统的2个油样具有伽马蜡烷和C28甾烷相对含量低、并且正构烷烃单体碳同位素组成轻的特征,划分为Ⅱ类原油,其来源尚不明确。塔中402井石炭系上、中和下统的5个油砂样各类组分具有介于Ⅰ、Ⅱ类原油之间的特征,为Ⅰ和Ⅱ类原油的混合物。5个油砂样从自由态组分、束缚态组分至油气包裹体Ⅰ类原油含量依次增高,Ⅱ类原油含量依次降低。2口井8个油砂样从自由态组分、束缚态组分至油气包裹体C23三环萜烷/(C23三环萜烷+C30藿烷)和C21/(C21+∑C29)甾烷比值都依次降低,反映了油气充注过程中,原油成熟度不断升高。塔中4井区储层油砂不同吸附态烃类分子与碳同位素的研究结果反映塔中4油田具有多种油气来源,经历长期油气充注过程,寒武系-下奥陶统烃源岩在地史上对该区具有成烃贡献。  相似文献   

5.
<正>近年来发现塔里木盆地典型来自于寒武系-下奥陶统烃源岩的原油具有富集13C的特征,其稳定碳同位素比值基本上集中在-28‰左右。比如:塔东2井寒武系储层中的原油明显具有寒武系-下奥陶统烃源岩成因原油的生标分布特征,被认为是寒武系自生自储的一个古油藏,其全油稳定碳同位素比值为-28.283‰,但相应的烃源岩干酪根同位素比值在-31‰左右;塔中62井志留系储层的原油被认为是一典型来自于寒武系烃源岩的透镜体油藏,其全油稳定碳同位素比值为-28.606‰;另外被认为来自于寒武系-  相似文献   

6.
一个典型的寒武系油藏:塔里木盆地塔中62井油藏成因分析   总被引:32,自引:4,他引:28  
塔里木盆地志留系沥青砂岩广泛发育,主要原因是来源于寒武系的原油在进入志留系储层后区域性的抬升剥蚀使油藏遭到严重破坏,但到目前为止,究竟是寒武系烃源岩还是中上奥陶统烃源岩或是两者都对现今的志留系沥青砂岩中的有机质有贡献还不清楚.对塔中62井原油的化学组成和油源的分析表明,其甾萜类组成具有寒武系烃源岩的组成特征,反映该油藏原油主要来源于寒武系.另一方面,塔中62井砂岩透镜体被泥岩圈闭,油藏具有较好的保存条件,且后期中上奥陶统生成的烃类难以充注进入油藏.塔中62井志留系油藏破坏作用较弱、保存较好,是塔里木盆地在志留系发现的第一例来源于寒武系的油藏.  相似文献   

7.
塔里木盆地塔东2井寒武系稠油地球化学特征与成藏   总被引:1,自引:0,他引:1  
唐友军 《沉积学报》2009,27(6):1208-1215
剖析塔东2井稠油的地球化学特征与形成过程,对深化塔里木盆地海相原油的成藏特征具有重要的意义。综合运用碳同位素、色谱、色谱—质谱等技术手段研究了塔东2井寒武系稠油的特征,研究结果揭示塔东2井寒武系稠油具高伽马蜡烷、高C28甾烷、低重排甾烷和高C27 三芳甾烷的特征,与寒武系—下奥陶统烃源岩的分子特征类似,说明塔东2井寒武系原油源自寒武系—下奥陶统烃源岩;塔东2井稠油中检出高丰度的稠环化合物(荧蒽、芘、苯并\[a\]蒽、屈、苯并荧蒽、苯并芘),及全油的碳同位素值明显偏重,揭示了原油烃类经热蚀变发生稠化;流体包裹体均一化温度和埋藏—热演化史分析确定了塔东2井原油的成藏期为450~440 Ma。  相似文献   

8.
塔中地区奥陶系储层烃包裹体特征及成藏分析   总被引:6,自引:2,他引:4  
张鼐  田隆  邢永亮  鲁雪松 《岩石学报》2011,27(5):1548-1556
利用新发明的不同期次烃包裹体组份提取仪器"多功能烃包裹体取样机",分别提取了塔中地区5期烃包裹体组份,并成功地分析出组份生物标志化合物,论证了5期烃包裹体油气的来源:第Ⅰ期烃包裹体来源于满加尔坳陷的寒武系海相碳酸盐岩烃源岩、第Ⅱ期烃包裹体来源于满加尔凹陷的中奥陶系烃源岩、第Ⅲ期烃包裹体来源于塔中下部寒武系海相碳酸盐岩烃源岩、第Ⅳ期烃包裹体是由寒武系海相碳酸盐岩原油分解而成、第Ⅴ期烃包裹体来源于塔中上奥陶统良里塔格组烃源岩。其形成时间分别为:早海西期约383Ma、晚海西期约240~260Ma、燕山-早喜山期早期、23Ma喜山运动二幕、喜山运动晚期到现在。塔中奥陶系储层中不是每一个圈闭都含有以上5期烃包裹体,有的圈闭只含其中的一期或二期或三期。第Ⅰ期主要是油气运移的 "足迹",仅路过奥陶系,未成藏。第II、IV、V期成藏普遍影响塔中奥陶系,是油气成藏的"历史",使奥陶系的原油具有中奥陶统油源(第II期)、上奥陶统油源(第V期)和寒武系油源(第IV期)混源特征,第Ⅱ、Ⅳ期烃包裹体大量存在是塔中Ⅰ号坡折带凝析油气高产的"标志"。 第Ⅲ期包裹体的发育可能预示在塔中东部地区中下奥陶统及寒武系形成大油藏,塔中东部地区是找原生大型油藏的重要靶区。  相似文献   

9.
塔北隆起雅克拉油气田原油成因特征   总被引:1,自引:0,他引:1  
针对雅克拉油气田多个含油气层位的原油,进行了一系列的地球化学测试分析,对雅克拉油气田原油的地球化学特征、成因特征进行了解剖。研究结果表明,雅克拉油气田深浅不同层位原油轻烃组成与轻烃单体烃碳同位素、类异戊二烯烷烃组成以及原油与馏分碳同位素组成具有明显的海相原油特征;深浅层原油三环萜烷、C28甾烷、三芳甾烷和甲基三芳甾烷以及原油与馏分碳同位素组成皆具有典型上奥陶统来源油的特征,与寒武-下奥陶统来源油特征差异明显,暗示雅克拉油气田原油来源于上奥陶统烃源层。  相似文献   

10.
       混源油的定量判识是当前石油地质地球化学研究的热点与难点。以塔里木盆地塔河油田奥陶系中聚集的混源油为典型研究实例,通过地质地球化学与数理统计学相结合的方法,探索了定量研究混源油的方法,取得良好效果。原油地球化学研究结果表明,塔河油田原油普遍混源,并表现出多期充注特征,早期充注原油遭受了生物降解,因此目前原油中的轻烃、链状烃、规则甾烷等生物标志物主要反映的是后期充注原油的特征,不能很好地指示早期充注原油。据此,选择受生物降解影响相对较小的三环萜烷和藿烷定量数据,采用多元数理统计学交替最小二乘算法进行了原油成因研究,综合分析后认为现今混源油中可划分出4个端元,其中端元1和2可能主要代表了中上奥陶统烃源岩的贡献,而端元3和4则可能主要代表了寒武系烃源岩的贡献。塔河主体区以寒武系原油聚集为主,而外围地区则以中上奥陶统原油聚集为主,并且在整个塔河油田,总体上以寒武系原油的贡献比例相对最高。这一综合对比研究表明,多元数理统计学方法在混源油的比例计算、端元分析等方面具有重要作用,是对传统地球地球化方法研究的有效补充,值得推广应用,此外,研究认识还为区域油气勘探提供了新的参考信息。  相似文献   

11.
从滴南凸起10个含油储集岩样品分步提取了自由态油气组分、束缚态油气组分和油气包裹体组分,各组分进一步做色谱、色谱-质谱和正构烷烃单体碳同位素分析。根据生物标志物组成,可将10个含油储集岩样分为两类:第一类包括D2-1和D18-12个侏罗系油砂样,第二类包括其他8个采自侏罗系、二叠系和石炭系含油储集岩样。两类样品生物标志物组成差异主要有:(1)第一类样品各类油气组分三环萜烷含量明显低于第二类样品;(2)第一类样品 C20、C21和 C23三环萜烷含量比较接近,其分布模式为 C20&lt;C21&gt;C23,第二类样品这3个化合物含量差异较大,且分布模式为C20&gt;C21&gt;C23;(3)第一类样品伽马蜡烷和β-胡萝卜烷相对含量高于第二类样品;(4)第一类样品C27甾烷含量较低而C28甾烷含量较高,第二类样品则相反。可以推断第一类样品自由态组分、束缚态组分和油气包裹体均来源于二叠系烃源岩而第二类样品各类油气组分则来源于石炭系烃源岩。第一类样品油气包裹体成熟度明显高于自由态组分和束缚态组分,表明早期充注原油的成熟度高于晚期充注的原油,总体上各类油气组分成熟度位于生油高峰阶段(Ro 0.8%~1.1%)。第二类样品从自由态组分、束缚态组分至油气包裹体成熟度依次降低,表明早期充注原油的成熟度低于晚期充注的原油,总体上各类油气组分成熟度位于高-过成熟阶段(Ro〉1.25%)。第一类样品各类油气组分正构烷烃单体碳同位素组成相对较轻,第二类样品各类油气组分正构烷烃单体碳同位素组成有一定的差异,组成较轻者与第一类样品各类油气组分接近。  相似文献   

12.
《Applied Geochemistry》2001,16(4):451-473
The thermal maturity of oils extracted from inclusions and the fluorescence colours of oil-bearing fluid inclusions have been measured in 36 sandstone samples from Australasian oil fields. The inclusion oils were analysed using an off-line crushing technique followed by GC–MS. A maturity assessment was made for each inclusion oil using 25 molecular maturity ratios, including a newly defined dimethyldibenzothiophene ratio (DMDR). Each inclusion oil was placed in one of 4 maturity brackets, approximately equivalent to early, mid, peak and post oil generation windows. The fluorescence colours of oil inclusions were visually-discriminated into “blue”, “white” and “yellow plus orange” and their proportions estimated using point counting techniques. Sixteen samples have >85% of oil inclusions with blue fluorescence, whilst other samples have more variable fluorescence colours. One sample has 100% of oil inclusions with yellow plus orange fluorescence. The results show that samples containing mainly blue-fluorescing oil inclusions have thermal maturities anywhere within the oil window. In particular, the molecular geochemical data strongly suggests that oil inclusions with blue fluorescence can have relatively low maturities (calculated reflectance <0.65%), contrary to the widely applied assumption that blue fluorescence colours indicate high maturities. Samples containing mainly white-fluorescing oil inclusions have maturities anywhere within the oil window and cannot be distinguished using molecular geochemical parameters from samples containing mainly blue-fluorescing oil inclusions. Though few in number, samples with mainly yellow and orange-fluorescing oil inclusions tend to have maturities in the lower half of the oil window. The data presented strongly suggest that although the relationship between API gravity and the fluorescence properties of crude oils is well established, the extension of this relationship to the use of the fluorescence colours of oil inclusions as a qualitative thermal maturity guide is not justified. Fluorescence colour depends in the first instance on chemical composition, which is controlled not only by maturity but by several other processes. For example, inclusions in samples from below current or residual oil zones in the Timor Sea contain a high proportion of yellow- and orange-fluorescing oil inclusions compared to the overlying oil zones, which are dominated by blue-fluorescing oil inclusions. This observation is interpreted to be due to water washing causing molecular and gross fractionation of oils prior to trapping. Fractionation of the gross composition of oil during the inclusion trapping process may also be a significant controlling process on the fluorescence colours of oil inclusions, due to the preferential adsorption of polar compounds onto charged mineral surfaces. A trapping control is strongly supported by synthetic oil inclusion work. Care should be taken when interpreting the charge history of samples containing oil inclusions with mixed fluorescence colour populations, such as those from the Iagifu-7x well in the Papuan Basin. It is possible that the different colour populations represent a single oil charge, with oil inclusions trapped under slightly different conditions or at slightly different grain surfaces, rather than multiple migration events.  相似文献   

13.
The analysis of oil trapped during secondary migration   总被引:1,自引:0,他引:1  
During secondary migration, there is an opportunity for oil to be trapped as fluid inclusions (FIs) within framework grains such as quartz and within diagenetic cements that have a crystalline structure. Oil saturation on migration pathways remains relatively low, so typically fewer oil inclusions get trapped compared with samples from an oil column. Geochemical analysis of the much smaller amounts of inclusion oil present in samples from interpreted oil migration pathways has been attempted for two samples from the Champagny-1 and Delamere-1 wells in the Vulcan Sub-Basin, northern offshore Australia. A combination of petrographic analysis, bulk geochemical inclusion analysis and log evaluation confirmed that both samples were from oil migration pathways. Despite the small number of oil inclusions, reliable geochemical data were acquired from both samples that were significantly above the levels detected for the system and outside-rinse blanks. The FI oil trapped on the interpreted oil migration pathway in Champagny-1 was generated from clay-rich marine source rock with little terrigenous organic matter input. It was generated at peak oil window maturity and correlates best with oils derived from the Late Jurassic Lower Vulcan Formation. In contrast, the Delamere-1 FI oil contains evidence of greater input of terrigenous organic matter and was generated at early oil window maturity. This FI oil also contains a signature of a biodegraded component, which could have been generated either from the Middle Jurassic Plover Formation, or from an older source rock. These data indicate that it is feasible to geochemically map migration pathways across prospects or basins, and to analyse palaeo-oil compositions in oil zones where the few inclusions get trapped. This also suggests that the few oil inclusions that sometimes occur in Proterozoic or Archaean rocks may be analysable in the future, which would provide relatively pristine and robust data on the composition and diversity of Earth’s early biosphere.  相似文献   

14.
Sequential extraction was performed on two oil sandstones from the Upper Carboniferous oil columns of TZ401 well.The free oils of these two oil sandstones and a crude oil from the Lower Carboniferous oil column of this well have low ratios of C28/C27+C28+ C29) steranes and gammacerane/C31 hopanes,ranging of 0.11-0.16 and 0.09-0.15,respectively,similar to those from the Middle-Upper Ordovician source rock.However,these two ratios for the adsorbed and inclusion oils of these two oil sandstones are relatively high,ranging of 0.29-0.31 and 0.26-0.40,respectively,similar to those of the Cambrian-Lower Ordovician source rock.This result demonstrates that the initial oil charging the reservoirs was derived from the Cambrian-Lower Ordovician source rock,whereas the later charging oil was derived from the Middle--Upper Ordovician source rock.  相似文献   

15.
根据流体包裹体的透射光和荧光镜下观察、包裹体均一温度及含油包裹体丰度(GOI)分析,对柴达木盆地北缘(柴北缘)地区南八仙、马北1号构造古近系、新近系油气储层样品中流体包裹体特征及油气成藏期进行了研究。柴北缘地区流体包裹体较为发育,存在盐水溶液包裹体和有机包裹体,主要分布在石英裂隙、次生加大边及胶结物中,但个体一般较小,主要为5~10μm。含油包裹体丰度GOI值较低,绝大多数样品GOI值分布在2.0%~10.5%之间,约40%样品的GOI值超过5%。包裹体均—温度在不同油气储层样品中差异较大,说明这些包裹体可能是在不同时期形成的。依据包裹体均—温度的实测结果,结合沉积埋藏-热演化史的资料,认为柴北缘地区南八仙构造和马北1号构造均经历了两期油气充注成藏,前者油气充注时间为N1-N2^1沉积期、N2^2-N2^3沉积期,后者油气充注时间为N1沉积期、N1末-N2沉积期。  相似文献   

16.
辽东凹陷南洼斜坡带旅大29油田在沙河街组二段获得了高产轻质原油和天然气,展现了良好的勘探潜力。为了进一 步明确其原油母质来源、沉积环境和烃源岩层位,对原油、油砂样品和围区烃源岩样品进行了系统的地球化学分析和油源 对比。研究结果表明,原油为低硫(0.0733%)、高蜡(20.77%) 的轻质成熟原油。原油样品饱和烃色谱完整,主峰碳为 C19,显示未遭受明显生物降解作用。油砂样品埋藏较浅,部分遭受生物降解等的影响,饱和烃色谱基线呈现明显的 “UCM”鼓包现象。原油和油砂样品具有低C19 三环萜烷/C23 三环萜烷(0.10~0.18)、低C24 四环萜烷/C26 三环萜烷(0.49~ 0.53)、低C27重排甾烷/C27甾烷(0.30~0.43)、中等伽马蜡烷指数(0.14~0.17) 和中等-高4-甲基甾烷参数(0.30~0.36),且 具有相对较重的全油碳同位素值(-27.1‰)。原油母质形成于淡水-微咸水的湖泊沉积环境,母源有机质以藻类等低等水 生生物为主,陆源有机质输入较少。旅大29油田原油主要来源于辽中凹陷和辽东凹陷沙三段烃源岩,同时有少量辽中凹陷 沙四段烃源岩的贡献。研究区高蜡轻质原油的形成主要受控于烃源岩母质来源,藻类等低等水生生物是高蜡轻质原油形成 的重要母质。  相似文献   

17.
从普光气田及邻近地区二叠系和下三叠统15个含沥青碳酸盐储集岩样品分步提取了自由态油气组分和油气包裹体组分,并且应用限定体系(金管)热解实验获取了固体沥青热解组分.各组分进一步做色谱和色谱-质谱分析获取了生物标志物组成.分析结果表明,从油气包裹体组分、自由态油气组分至固体沥青热解组分,伽马蜡烷/C31升藿烷比值依次增高.同时油气包裹体组分 C23三环萜烷/(C23三环萜烷+C30藿烷)、C21/(C21+ΣC29)甾烷、C27重排甾烷/(C27重排甾烷+C27规则甾烷)、20S/(20R+20S) C29甾烷和αββ/(ααα+αββ) C29甾烷等成熟度指标与自由态组分相近,而明显高于固体沥青热解组分.根据分子指标,可以推断古油藏的原油来源于不同的烃源岩,早期充注的原油来源于下志留统烃源岩,具有较低的伽马蜡烷含量和较高的成熟度;晚期充注的原油来源于上二叠统烃源岩,具有较高的伽马蜡烷含量和较低的成熟度.固体沥青主要为晚期充注、来源于上二叠统烃源岩的原油裂解生气的产物  相似文献   

18.
辽东凹陷南洼斜坡带旅大29油田在沙河街组二段获得了高产轻质原油和天然气,展现了良好的勘探潜力。为了进一 步明确其原油母质来源、沉积环境和烃源岩层位,对原油、油砂样品和围区烃源岩样品进行了系统的地球化学分析和油源 对比。研究结果表明,原油为低硫(0.0733%)、高蜡(20.77%) 的轻质成熟原油。原油样品饱和烃色谱完整,主峰碳为 C19,显示未遭受明显生物降解作用。油砂样品埋藏较浅,部分遭受生物降解等的影响,饱和烃色谱基线呈现明显的 “UCM”鼓包现象。原油和油砂样品具有低C19 三环萜烷/C23 三环萜烷(0.10~0.18)、低C24 四环萜烷/C26 三环萜烷(0.49~ 0.53)、低C27重排甾烷/C27甾烷(0.30~0.43)、中等伽马蜡烷指数(0.14~0.17) 和中等-高4-甲基甾烷参数(0.30~0.36),且 具有相对较重的全油碳同位素值(-27.1‰)。原油母质形成于淡水—微咸水的湖泊沉积环境,母源有机质以藻类等低等水 生生物为主,陆源有机质输入较少。旅大29油田原油主要来源于辽中凹陷和辽东凹陷沙三段烃源岩,同时有少量辽中凹陷 沙四段烃源岩的贡献。研究区高蜡轻质原油的形成主要受控于烃源岩母质来源,藻类等低等水生生物是高蜡轻质原油形成 的重要母质。  相似文献   

19.
Current oil saturation in the Moxizhuang (莫西庄) Oil Field in central Janggar (准噶尔) basin was evaluated by logging interpretation and measured on core samples, and the paleo-oil saturation in both the pay zones and water zones was investigated by graln-containing-oil inclusion (GOI) analysis.The pay zones in this field have low oil saturation and display low resistivity and small contrast between pay zones and water zones, and are classified as low-porosity, low oil saturation, and low resistivity reservoirs. Both the current low oil-saturation pay zones and the water zones above 4 365 m have high GOI values (up to 38%), suggesting high paleo-oil saturation. The significant difference between current oil saturation from both logging interpretation and core sample measurement and paleo-oil saturation indicated by GOI analysis suggests that this low oil-saturation field evolved from a high oil-saturation pool. Lateral re-migration and spill of formally trapped oil owing to changes in structural configuration since Neogene was the most plausible mechanism for oil loss in the Moxizhuang Oil Field.The combined effects of differential accumulation in the charge phase and the differential re-migration and spill of accumulated oil in Neogene are responsible for the complicated correlation between residual oil saturation and porosity/permeability of the reservoir sandstones and the distribution of low oil-saturation pay zones and paleo-oil zones (current water zones).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号