首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fracture behaviour of ferritic and ferritic martensitic steels in ductile to brittle transition (DBT) region has been extensively studied in recent years and a probabilistic approach of master curve method is generally used to describe the fracture toughness of BCC steels in DBT region as a function of temperature. The assessment of cleavage failure probability however is still untouched in the upper region of ductile to brittle transition, although various extensions of master curve approach and various local approaches has been explored. Additionally the geometry and loading in tension and bending also adds up to the difficulties when cleavage failure is assisted with prior ductile tearing. In this work the cleavage fracture is investigated in upper region of DBT and a modified master curve approach is presented which can satisfactorily describe the fracture toughness as a function of temperature as well as amount of ductile tearing preceded by cleavage.  相似文献   

2.
Abstract

The creep life time of a smooth specimen can be predicted using existing laws for creep deformation and steady state creep rate. When crack growth behaviour is involved, it is necessary to construct a law of creep crack growth rate to predict creep fracture life. Creep fracture life can be measured by integrating the law of creep crack growth rate. One example is the creep crack growth rate, represented by the parameter Q*. In this study, we investigated the applicability of this prediction method to creep fracture remnant life for a cracked specimen. The Ω criterion is proposed to predict creep fracture remnant life for a smooth specimen for creep ductile materials. In this study, the correlation between Q*L derived from the paremeters Q* and Ω is investigated. The correlation between QL* and Ω provided a unified theoretical prediction law of creep fracture remnant life for high-temperature creep-ductile materials in the range from smooth to precracked specimens.  相似文献   

3.
4.
5.
Based on the upper bound solution of cell models under dynamic or creep loading conditions, the Gurson-Tvergaard-Needleman (GTN) constitutive law of ductile fracture for rate and temperature-dependent materials with isotropic and kinematic hardening has been established. Two additional parameters, which account for the influences of strain rate, inertia and the average distance between voids, have been introduced in the GTN yield criterion. 2D and 3D analysis has been performed for different metals. It can be concluded that the GTN model is a powerful tool for crack growth analysis.  相似文献   

6.
Roller hemming limit is predicted based on ductile fracture criterion in this approach. Plastic deformation in sheets made of aluminum alloy 6061-T6 is studied experimentally. Combined isotropic and kinematic hardening rule is considered in roller hemming numerical analysis. Forming limit stress curve at fracture (FLSCF) is derived from Cockcroft–Latham ductile damage criterion to determine fracture during roller hemming simulation. Serrated strain paths are detected along hemline. The zones where fracture takes place obtained by experiments and FE simulations are compared. It is demonstrated that FLSCF, which is on the basis of ductile damage criteria and basically irrelevant to linearity of strain path could be used to predict fracture of roller hemming correctly.  相似文献   

7.
Thermoplastic resin and fiber-reinforced thermo-plastics (FRTPs) were used without post-cure treatment as “molded material.” For such materials, creep behavior and physical aging occur simultaneously. This study examined the creep behavior of polycarbonate (PC) and glass-fiber-reinforced polycarbonate (GFRPC) injection moldings, including the effect of physical aging and fiber content, and determined that the time–temperature superposition principle could be applied to the creep behavior for different fiber contents. The effects of physical aging on creep behavior were evaluated quantitatively on pure resin and with various fiber contents without heat treatment. We found that the effect of physical aging could be evaluated with the proposed factor, “aging shift rate.” To discuss the linearity of viscoelasticity in FRTPs, this study used two shift factors: time and modulus shift factors. The fiber content affected creep behavior by both retarding and restraining it through changing the elastic modulus. This was shown by generating a grand master curve of creep compliance, which included the effects of time, temperature, and fiber content. Using the grand master curve of creep compliance and shift factors, it was possible to estimate the creep deformation of molded materials under varying conditions and fiber contents. The estimated creep deformation gave a very good fit to the experimental creep deformation.  相似文献   

8.
The quantitative relationship between creep and recovery which had been previously developed by Mindel and Brown [1] has been applied to interrupted creep tests. Single and multiple interruptions (fatigue) were investigated. In general it was observed that interruptions decreased the time to failure. The experiments were conducted in compression in the range of high stresses. Failure was caused by excessive deformation or accelerated creep which is produced by a softening mechanism that is common to all linear polymers. The temperature changes associated with the creep and recovery parts of the cyclic loading were measured. The temperature rise during loading exceeds the decrease during unloading so that there is a net rise in temperature if the creep and recovery intervals are equal. However, the temperature change is not the primary cause for the decrease in time-to-failure for cyclic loading as compared to the failure time during steady stress creep. It has been concluded that fatigue failure under compressive deformation is related fundamentally to the constant stress creep curve.  相似文献   

9.
The application of the fracture mechanics approach to time-dependent high temperature crack growth has been reviewed. Available data on several structural alloys indicate that depending on the environmental sensitivity and creep ductility of the material, creep crack growth can be characterized by either linear elastic parameter, K, non-linear elastic-plastic parameter, J*-integral, or reference stress, σref. In particular for materials that are significantly sensitive to environment, K can adequately characterize the growth rate, and for materials that are significantly creep ductile, σref can be used to predict creep life of a cracked body. Finally, for materials that are relatively ductile and wherein crack growth occurs predominantly by a deformation process, J* integral appears to be the characterizing parameter for the growth rate. Data for several materials indicate that under steady state crack growth conditions, there may be a unique growth rate-J* relation independent of temperature and material. This would have a profound impact in terms of the utility of fracture mechanics approach to predict creep crack growth rate and needs to be examined further. Conditions under which K, J* or σref is applicable are discussed in detail.  相似文献   

10.
It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameter criterion based on equivalent plastic strain and stress triaxiality.The present study focuses on the effects of geometrical discontinuity, strength mis-match, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on the critical condition for ductile fracture initiation using a two-parameter criterion. Fracture initiation testing has been conducted under static and dynamic loading using circumferentially notched round-bar specimens. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal elastic-plastic dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out.The tensile tests on specimens with an undermatching interlayer showed that the relationship between the critical equivalent plastic strain to initiate ductile fracture and stress triaxiality was equivalent to that obtained on homogeneous specimens under static loading. Moreover, the two-parameter criterion for ductile fracture initiation is shown to be independent of the loading rate. It was demonstrated that the critical global strain to initiate ductile fracture in specimens with strength mis-match under various loading rate can be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mis-match and dynamic loading effects on stress/strain behaviors.  相似文献   

11.
Brittle fracture in the ductile to brittle transition regime is connected with specimen size effects and - more importantly - tremendous scatter of fracture toughness, which the technical community is currently becoming increasingly aware of. The size effects have the consequence that fracture toughness data obtained from small laboratory specimens do not directly describe the fracture behavior of real flawed structures. Intensive research has been conducted in the last decade in order to overcome these problems. Different approaches have been developed and proposed, one of the most promising being the master curve method, developed at VTT Manufacturing Technology.For validation purposes, a large nuclear grade pressure vessel forging 22NiMoCr37 (A508 Cl.2) has been extensively characterized with fracture toughness testing. The tests have been performed on standard geometry CT-specimens having thickness 12.5, 25, 50 and 100 mm. The a/W ratio is close to 0.6 for all specimens. One set of specimens had 20% side-grooves. The obtained data consists of a total of 757 results fulfilling the ESIS-P2 test method validity requirements with respect to pre-fatigue crack shape and the ASTM E-1921 pre-fatigue load. The master curve statistical analysis method is meticulously applied on the data, in order to verify the validity of the method. Based on the analysis it can be concluded that the validity of all the assumptions in the master curve method is confirmed for this material.  相似文献   

12.
Effect of temperature on multiaxial creep behaviour of 304HCu austenitic stainless steel has been investigated. The multiaxiality was introduced by incorporating notches in smooth specimens. Creep rupture life increased with notch acuity ratio having a saturation/decline tendency. Notch strengthening increased with temperature, stress and notch sharpness. Multiaxial ductility decreased rapidly with notch sharpness and tended towards saturation. Fracture mode was found to change from transgranular ductile to intergranular creep depending on the stress, temperature and notch sharpness. Finite element analysis of notched specimens along with orientation imaging microscopic study was carried out to assess the deformation and damage at different normalised stress ratio. A temperature independent unique master plot for multiaxial rupture life as a function of stress has been established.  相似文献   

13.
Due to the damage accumulation during creep deformation, creep failure after a certain service time is the most important failure mode for metal structures working at high temperatures. Considering the coupled damage evolution of geometric and material’s damage, a creep life evaluation method based on continuum damage mechanics has been proposed and examined. It is found that the geometric damage evolution model can be deduced theoretically from the creep constitutive equation, while the material’s damage evolution can be assumed in the same way as that for static fatigue problems. Through solving the coupled damage evolution models, creep lives under various stress levels and temperatures can be evaluated in a unified way, just by several material constants which can be determined by some creep tests only.  相似文献   

14.
The deformation and fracture behaviourof nickel-base superalloy GH698 with differentgrain size have been studied at 700℃ underfatigue-creep interaction conditions. Comparedwith coarse-grained specimens, the grain refiningprocess shows obvious effect on the mechanicalbehaviour of the alloy, i. e. in F and C zones,the fraction of pure fatigue and creep fractureon fracture surfaces is greatly reduced, whichdecreases and increases the fracture life inzones F and C respectively, in FC and C zones,creep deformation is greatly restrained by thealternating stress component, which increasesthe fracture life remarkably. It is also provedthat in spite of the difference in microstru-tures such as grain size, for a constant tem-perature, a unique life equation t_r=A~n canbe used to predict rupture life within the stressregion controlled by the same fracture mode.  相似文献   

15.
This paper reviews the fundamentals of the development of creep damage constitutive equations for high Cr steels including (1) a concise summary of the characteristics of creep deformation and creep damage evolution and their dependence on the stress level and the importance of cavitation for the final fracture; (2) a critical review of the state of art of creep damage equation for high Cr steels; (3) some discussion and comments on the various approaches; (4) consideration and suggestion for future work. It emphasises the need for better understanding the nucleation, cavity growth and coalesces and the theory for coupling method between creep cavity damage and brittle fracture and generalisation.  相似文献   

16.
By means of the measurement of the creep curve and the observation of SEM and transmission electron microscope (TEM), an investigation has been made into the microstructure evolution and deformation features of AZ31 Mg-alloy during high temperature creep. Results show that the deformation features of the alloy in the primary stage of creep are that significant amount of dislocation slips are activated on basal and non-basal planes, then these ones are concentrated into the dislocation cells or walls as creep goes on. At the same time, twinning occurs as an additional deformation mechanism in the role of the compatibility stress. During steady state creep, the dislocation cells are transformed into the subgrains, then, the protrusion and coalition of the sub-boundaries results in the occurrence of dynamic recovery (DRV). After the dynamic recrystallization (DRX), the multiple slips in the grain interiors are considered to be the main deformed mechanism in the later stage of the steady state creep. An obvious feature of creep entering the tertiary stage is that the cracks appear on the locations of the triple junction. As creep continues, the cracks are viscous expanded along the grain boundaries; this is taken for being the fracture mechanism of the alloy crept to failure. The multiple slips in the grain interiors and the cracks expanded viscous along the grain boundary occur in whole of specimens, that, together with the twins and dynamic recrystallization, is responsible for the rapid increase of the strain rate in the later stage during creep.  相似文献   

17.
This paper presents an investigation of the tensile creep behaviour of woven fibre composite stitched, through the thickness, with cotton or carbon threads along the loading direction. Creep tests were conducted at various temperatures. It was found that the through-thickness stitching significantly improved the creep deformation and creep rupture resistance of these composites. The creep data were analysed using the ‘timetemperature-stress superposition principle’ theory (TTSSP). The long-term behaviour of the material could then be predicted by means of a master curve. Finite-element analyses of the composites was also carried out and the stitching was found to considerably reduce the interlaminar stresses.  相似文献   

18.
Thermal gradient is one of the main features in frozen engineering, especially in artificial frozen wall (AFW) in deep alluvium. This paper investigated the creep behaviors of frozen soil with thermal gradient. A series of uniaxial creep tests were carried out on frozen saturated clay under various thermal gradients and creep stresses by GFC (freezing with non-uniform temperature without experiencing K0 consolidation) method. Two stages were observed during the whole creep process, i.e., instantaneous elastic deformation and decaying creep deformation. Radial creep deformation of ε3 almost increases linearly with an increase in axial creep deformation of ε1, and the slope of ε3ε1 curve increases as the thermal gradient (or creep stress) increased. Long-term strength decreases as the thermal gradient (or the creep time) increased. Considering the correction equation on thermal gradient, the generalized Kelvin model consisting of one Hooke element and two Kelvin elements has been developed to describe the axial creep deformation. The validity of the model is verified by comparing its calculated results with the results of creep tests under both low and high thermal gradient. It is found that the axial creep deformation behavior of frozen saturated clay can be represented by generalized Kelvin model, and the proposed model reflects thermal gradient effects to the creep deformation well.  相似文献   

19.
The article shows how the stepped isothermal method (SIM), which has hitherto been applied to polyester fibres, can be applied to the creep testing of aramids. The method is an improvement over the time temperature superposition method since a complete creep curve can be obtained from a single fibre. However, adjustments have to be made to account for the temperature changes and the past history of the fibre. Techniques are shown for performing these adjustments and the resulting master curves are compared from several different tests with different temperature sequences. Activation energies are calculated, which show that the same mechanism is acting at all stages, and creep rupture lifetime predictions are made which are longer than those hitherto made by extrapolations from short-term creep tests.  相似文献   

20.
Conventional creep testing takes a long time to obtain stress-rupture data for aramid fibres at the low stress levels likely to be used in practical applications. However, the rate of creep of aramid can be accelerated by a thermally activated process to obtain the failure of fibres within a few hours. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve know as a master curve, from which stress-rupture data can be obtained. This technique is known as the time-temperature superposition principle and will be applied to Kevlar 49 yarns. Important questions relating to the techniques needed to obtain smooth master curves will be discussed, as will the validity the resulting curves and the corresponding stress-rupture lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号