首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reactor configuration for continuous emulsion polymerization is proposed consisting of a plug flow reactor followed by a train of CSTR's. Monomer conversion is controlled by manipulating the quantity of water and monomer which are allowed to bypass the plug flow reactor and enter the first CSTR directly. A multivariate pole-placement adaptive controller is used to implement the controls. Simulation results indicate good control of both conversion and particle size. Open-loop experimental results indicate the effectiveness of the plug flow reactor for eliminating the oscillations sometimes found in CSTR emulsion polymerization.  相似文献   

2.
In this article, a nonlinear adaptive control strategy is proposed for a multicomponent batch distillation column. The hybrid control scheme consists of a generic model controller (GMC) and a nonlinear adaptive state estimator (ASE). In the first part of the study, an adaptive observer is designed aiming to estimate the partially known parameters based on the measured compositions in the presence of process/predictor mismatch. The open-loop dynamic behavior of the developed ASE estimator is investigated under initialization error, disturbance, and uncertain parameters. In the subsequent part, the adaptive GMC-ASE controller (GMC control structure in conjunction with ASE estimator) has been synthesized for the example distillation column. A simulation-based comparative study has been conducted between the derived nonlinear GMC-ASE control algorithm and a gain-scheduled proportional integral (GSPI) law in terms of constant composition control. The proposed adaptive control scheme is shown to be quite promising due to the exponential error convergence capability of the ASE estimator in addition to the high-quality performance of the GMC controller.  相似文献   

3.
This article proposes a model-based direct adaptive proportional-integral (PI) controller for a class of nonlinear processes whose nominal model is input-output linearizable but may not be accurate enough to represent the actual process. The proposed direct adaptive PI controller is composed of two parts: the first is a linearizing feedback control law that is synthesized directly based on the process's nominal model and the second is an adaptive PI controller used to compensate for the model errors. An effective parameter-tuning algorithm is devised such that the proposed direct adaptive PI controller is able to achieve stable and robust control performance under uncertainties. To show the robust stability and performance of the direct adaptive PI control system, a rigorous analysis involving the use of a Lyapunov-based approach is presented. The effectiveness and applicability of the proposed PI control strategy are demonstrated by considering the time-dependent temperature trajectory tracking control of a batch reactor in the presence of plant/model mismatch, unanticipated periodic disturbances, and measurement noises. Furthermore, for use in an environment that lacks full-state measurements, the integration of a sliding observer with the proposed control scheme is suggested and investigated. Extensive simulation results reveal that the proposed model-based direct adaptive PI control strategy enables a highly nonlinear process to achieve robust control performance despite the existence of plant/model mismatch and diversified process uncertainties.  相似文献   

4.
In this work, we present an approach to estimation and control of surface roughness in thin film growth using kinetic Monte-Carlo (MC) models. We use the process of thin film growth in a stagnation flow geometry and consider atom adsorption, desorption and surface migration as the three processes that shape film micro-structure. A multiscale model that involves coupled partial differential equations (PDEs) for the modeling of the gas phase and a kinetic MC simulator, based on a high-order lattice, for the modeling of the film micro-structure, is used to simulate the process. A roughness estimator is constructed that allows computing estimates of the surface roughness at a time-scale comparable to the real-time evolution of the process using discrete on-line roughness measurements. The estimator involves a kinetic MC simulator based on a reduced-order lattice, an adaptive filter used to reduce roughness stochastic fluctuations and an error compensator used to reduce the error between the roughness estimates and the discrete roughness measurements. The roughness estimates are fed to a proportional-integral (PI) controller. Application of the proposed estimator/controller structure to the multiscale process model demonstrates successful regulation of the surface roughness at the desired value. The proposed approach is shown to be superior to PI control with direct use of the discrete roughness measurements. The reason is that the available measurement techniques do not provide measurements at a frequency that is comparable to the time-scale of evolution of the dominant film growth dynamics.  相似文献   

5.
In this article, state feedback predictive controller for hybrid system via parametric programming is proposed. First, mixed logic dynamic (MLD) modeling mechanism for hybrid system is analyzed, which has a distinguished advantage to deal with the logic rules and constraints of a plant. Model predictive control algorithm with moving horizon state estimator (MHE) is presented. The estimator is adopted to estimate the current state of the plant with process disturbance and measurement noise, and the state estimated are utilized in the predictive controller for both regulation and tracking problems of the hybrid system based on MLD model. Off-line parametric programming is adopted and then on-line mixed integer programming problem can be treated as the parameter programming with estimated state as the parameters. A three tank system is used for computer simulation, results show that the proposed MHE based predictive control via parametric programming is effective for hybrid system with model/olant mismatch, and has a potential for the engineering applications.  相似文献   

6.
Two adaptive type-2 fuzzy logic controllers with minimum number of rules are developed and compared by simulation for control of a bioreactor in which aerobic alcoholic fermentation for the growth of Saccharomyces cerevisiae takes place. The bioreactor model is characterized by nonlinearity and parameter uncertainty. The first adaptive fuzzy controller is a type-2 fuzzy-neuro-predictive controller (T2FNPC) that combines the capability of type-2 fuzzy logic to handle uncertainties, with the ability of predictive control to predict future plant performance making use of a neural network model of the nonlinear system. The second adaptive fuzzy controller is instead a self-tuning type-2 PI controller, where the output scaling factor is adjusted online by fuzzy rules according to the current trend of the controlled process. The performance of a type-2 fuzzy logic controller with 49 rules is used as reference.  相似文献   

7.
A new, reliable, and easy-to-use adaptive control strategy has been developed to overcome the long-existing difficulties in adaptive control practice caused by unknown and varying process dead time. A self-tuning PID control algorithm is adopted to control a distillation column possessing second-order-plus-dead-time dynamics. The self-tuning strategy is based on recursive least-squares estimation of process parameters. U-D factorization is applied to stabilize the parameter estimation calculations. A variable forgetting factor is used to alleviate wind-up in the estimator. A simulation study and an experimental evaluation demonstrate the capability of the adaptive algorithm.  相似文献   

8.
This study deals with the design of an inferential estimator to predict matte grade in a copper smelter. A novel mathematical model for the dynamics of the smelter is presented and used as the basis of the on-line estimators. Two different types of estimators are proposed: an estimator with fixed parameters and an estimator with parameters which adapt in time based on infrequent process measurements. Several configurations of the adaptive and fixed estimators, based on different combinations of parameters and measurements, have been designed and compared to plant data. Conclusions are drawn regarding the most accurate configuration.  相似文献   

9.
Biodiesel transesterification reactors resemble the heart of any biodiesel manufacturing plant. These reactors involve a highly complex set of chemical reactions and heat transfer characteristics. The high nonlinearity inherent in the dynamics of these reactors requires an efficient process control algorithm to handle the variation of operational process parameters and the effect of process disturbances efficiently. In this work, a multi‐model adaptive control strategy is considered for achieving the goal mentioned above. In order to implement the adaptive controller, a rigorous mechanistic model of the biodiesel transesterification reactor was developed and validated with published experimental results. The validated model was analyzed for stability and nonlinearity. The analysis revealed that the system is stable. However, its high nonlinearity necessitates an advanced control strategy to be considered. The input‐output relationship between the effective process variables was studied and the control system synthesis revealed a two‐by‐two control system. Two adaptive control loops were then designed and tuned to optimize the performance of the controller. Finally, a comparison with conventional controllers revealed the superiority of the new control system in terms of set‐point tracking and disturbance rejection. The results of this work prove that an adequately designed adaptive control system can be used to improve the performance of the transesterification reactor.  相似文献   

10.
A single variable pole-placement self-tuning controller (PPSTC) is used to simulate examples typical of chemical processes; i.e., open-loop stable, unstable, and unstable non-minimum phase systems with unknown varying process dead time. The PPSTC is shown to be effective in each case. Set-point tracking and rejection of randomly occurring deterministic disturbances for all three types of processes are achieved. Simultaneous estimation of process parameters and process time delay is realized by using a recursive extended least squares method.  相似文献   

11.
This paper demonstrates that a state estimator can be successfully designed and implemented in a feedback control system of reactive distillation. The work of the state estimator is to provide the state compositions that are required to be used in the controller for necessary action. The control performance of a system that relies on the state estimator is examined and compared to a system that takes direct measurement from the process assuming the availability of a perfect online analyzer. It is found that the estimator-based system is robust against a moderate measurement errors and erroneous initial conditions. If the state estimator is designed from a highly erroneous process model, noisy measurements and approximate initial conditions, the use of estimator together with an online analyzer (for easily measured states) is recommended to achieve an effective control of a reactive distillation system.  相似文献   

12.
This paper deals with the advanced adaptive control of a batch reactive distillation (RD) column for the production of ethyl acetate. The nonlinear adaptive control law consists of the generic model controller (GMC) and an adaptive state estimator (ASE). In the first part of the present work, the design approach of the ASE scheme in two different forms, namely ASE1 and ASE2, has been addressed for a batch reactive rectifier. The predictor model of both the ASE estimators includes only a component mole balance equation around the condenser-reflux drum system and an extra state equation having no dynamics, and therefore, there is a large process/predictor mismatch. In presence of this structural discrepancy, the adaptive estimation schemes compute the imprecisely known parameters quite accurately based on the measured distillate composition under initialization error, disturbance and uncertainty. In the subsequent part, the adaptive GMC–ASE1 control structure has been formulated for the sample reactive column. This nonlinear control strategy shows comparatively better closed-loop performance than the gain-scheduled proportional integral (GSPI) controller due to the exponential error convergence capability of the estimation scheme and the high-quality control of the GMC law.  相似文献   

13.
刘济  顾幸生  张素贞 《化工学报》2010,61(10):2651-2655
连续式PET固相缩聚移动床反应器具有显著的分布参数特性,由于建模简化或过程时变等原因使得所建模型参数不精确,导致反应器状态的估计失真。首先采用正交配置方法离散PET固相缩聚过程的偏微分方程模型,然后基于改进的平方根不敏Kalman滤波算法(ISR-UKF),设计自适应联合估计器,同时获得参数和状态估计值。实验结果表明,参数估计结果合理,状态估计精度较高且稳定性好;并获得了频率因子、活化能近似值和有效系数随反应温度动态变化的规律,表明所提出的联合估计器能获得较好的实际应用效果。  相似文献   

14.
A linear matrix inequality (LMI)-based robust model predictive control (MPC) is applied to a continuous stirred-tank reactor for the polymerization of methyl methacrylate (MMA). The polytopic model is constructed to predict the responses to various control input sequences by using Jacobians of uncertain nonlinear model at several operating points and the controller design is characterized as the problem of minimizing an upper bound on the ‘worst-case’ infinite horizon objective function subject to constraints on the control input and plant output. Simulation studies under different conditions are conducted to validate the feasibility of the optimization problem and evaluate the applicability of such a control scheme. Simulation results show that, despite the model uncertainty, the LMI-based robust model predictive controller performs quite satisfactorily for the property control of the continuous polymerization reactor and guarantees the robust stability.  相似文献   

15.
聚乙烯反应过程中物流-能流剧烈交叠、反应-传递相互耦合,使得过程具有强非线性以及多重稳态。传统的顺序设计方法不能保证系统有足够的控制自由度,当存在扰动和过程参数不确定性时,仅依靠设计控制器很难提高产品质量。提出一种聚乙烯工艺稳态设计与运行控制的集成优化方案,创造性地引入Kriging高斯模型同时预测模型动态和模型不确定性。另一个重要的贡献是在聚乙烯工艺设计阶段,设计性能指标,定量描述过程稳态设计对闭环动态的影响。所提出的方法已经通过对气相聚乙烯工艺设计和运行控制的集成优化进行了验证,并在参数不确定性和扰动存在情况下仿真证实了集成优化设计方案的高效性。  相似文献   

16.
新一代的自适应模型预测控制器   总被引:1,自引:1,他引:0  
徐祖华  ZHU Yucai  赵均  钱积新 《化工学报》2008,59(5):1207-1215
提出了新一代的自适应模型预测控制器,自适应MPC控制器由MPC控制模块、在线辨识模块、性能监控模块3个模块组成,相互协调配和来实现自适应MPC控制。除了控制器功能设计以外,其余过程均可自动进行。对于新建MPC应用,首先进行多变量测试与辨识,在模型符合控制要求时,自动进入控制器投运。通过控制器性能监视发现模型不满足控制要求精度时,触发一次多变量模型测试与辨识过程,替换原有模型进行控制,保证控制器性能始终处于最佳状态。自适应MPC控制器在PTA装置上的应用表明了算法的有效性。  相似文献   

17.
基于粒子群优化算法的球磨机制粉系统PID-ANN解耦控制器   总被引:2,自引:0,他引:2  
王介生  丛峰武  张勇 《化工学报》2008,59(7):1743-1748
球团厂钢球磨煤制粉系统是多变量强耦合、时滞、非线性以及生产工况变化大的复杂对象,其自动控制问题一直是控制界关注的热点。基于粒子群算法具有对整个参数空间进行高效并行搜索的特点以及PID神经网络的自调节和自适应特性,设计了具有PID结构的多变量自适应神经网络控制器。PID神经网络解耦控制方法被用来消除回路之间的耦合,神经网络连接权值由粒子群算法进行学习优化。仿真研究表明所建模型和所提控制方法具有较好的控制品质、良好的自适应解耦能力和自学习功能。该控制策略可在大范围内克服系统的非线性和强耦合问题,具有很高的工程实用价值。  相似文献   

18.
This paper concerns nonlinear temperature control of a batch polymerization reactor where suspension polymerization of methyl methacrylate (MMA) takes place. For this purpose, four control algorithms, namely, a fix proportional‐integral (PI) controller, an adaptive proportional‐integral‐derivative (PID) controller and two globally linearizing control (GLC) schemes, one for known kinetic model (GLC‐I) and the other for unknown kinetic model (GLC‐II), are selected. The performances of these controllers are compared through simulation and real‐time studies in the presence of different levels of parameter uncertainty. The results indicate that GLCI and GLC‐II have better performances than fix PI and adaptive PID, especially in case of strong gel effect. The worst performance belongs to adaptive PID because of rapid model changes in gel effect region. GLC‐II has a simpler structure than GLC‐I and can be used without requiring the kinetic model. In implementation of GLC‐I the closed loop observer should be used because of model uncertainties.  相似文献   

19.
In this paper, a simple adaptive control strategy is suggested for temperature tracking control of batch processes. A nonlinear controller, which is in structure very simple and consists of a single parameter, is proposed. To enable this controller to control a batch process adaptively, a simple parameter tuning algorithm is derived based on the Lyapunov stability theorem. The proposed adaptive control scheme is directly operational, which does not depend on process model and the only a priori process information required is the system response direction. To demonstrate the effectiveness and applicability of the proposed scheme, illustrative examples are provided. Extensive simulation results reveal that the proposed adaptive control strategy appears to be a simple and effective approach to batch process control, which provides robust control despite the wide range of operating conditions and nonlinear dynamics of the system.  相似文献   

20.
作为塑料挤出过程的关键参数,塑料挤出机的温度在实际操作中存在非线性和滞后性,严重影响了温度控制的稳定性和控制精度。基于塑料挤出机的整体式料筒建模,并设计了自适应滑模温度控制系统。由于滑模控制器对参数变化和外界干扰不敏感、控制器结构相对简单而被广泛应用于工程实践。自适应滑模控制在普通滑模控制的基础上,进一步采用自适应律以自动适应实际系统参数的变化,具有更高的控制精度和系统鲁棒性。研究采用自适应滑模算法对整体式料筒温度设计相应控制器,并通过仿真实验验证了控制器的控制精度和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号