首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.  相似文献   

2.
3.
The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3 h) and low concentrations of phosphate (?50 μM). Sorption of phosphate on calcite was studied in 11 different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, and . Our results show strong sorption of phosphate onto calcite. The kinetics of phosphate sorption onto calcite are fast; adsorption is complete within 2-3 h while desorption is complete in less than 0.5 h. The reversibility of the sorption process indicates that phosphate is not incorporated into the calcite crystal lattice under our experimental conditions. Precipitation of phosphate-containing phases does not seem to take place in systems with ?50 μM total phosphate, in spite of a high degree of super-saturation with respect to hydroxyapatite (SIHAP ? 7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the activity decreases (at constant pH) and as pH increases (at constant activity). The primary effect of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or > as the adsorbed surface species. Generally the model captures the variation in phosphate adsorption onto calcite as a function of solution composition, though it was necessary to include two types of sorption sites (strong and weak) in the model to reproduce the convex shape of the sorption isotherms.  相似文献   

4.
5.
Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage   总被引:4,自引:0,他引:4  
The effect of sulfur on the partitioning of Cu in a melt-vapor-brine ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 140 MPa, fO2 = nickel-nickel oxide (NNO), logfS2=-3.0 (i.e., on the magnetite-pyrrhotite curve at NNO), logfH2S=-1.3 and logfSO2=-1. All experiments were vapor + brine saturated. Vapor and brine fluid inclusions were trapped in silicate glass and self-healed quartz fractures. Vapor and brine are dominated by NaCl, KCl and HCl in the S-free runs and NaCl, KCl and FeCl2 in S-bearing runs. Pyrrhotite served as the source of sulfur in S-bearing experiments. The composition of fluid inclusions, glass and crystals were quantified by laser-ablation inductively coupled plasma mass spectrometry. Major element, chlorine and sulfur concentrations in glass were quantified by using electron probe microanalysis. Calculated Nernst-type partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-free system. The partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-bearing system. Apparent equilibrium constants (±1σ) describing Cu and Na exchange between vapor and melt and brine and melt were also calculated. The values of are 34 ± 21 and 128 ± 29 in the S-free and S-bearing runs, respectively. The values of are 33 ± 22 and60 ± 5 in the S-free and S-bearing runs, respectively. The data presented here indicate that the presence of sulfur increases the mass transfer of Cu into vapor from silicate melt. Further, the nearly threefold increase in suggests that Cu may be transported as both a chloride and sulfide complex in magmatic vapor, in agreement with hypotheses based on data from natural systems. Most significantly, the data demonstrate that the presence of sulfur enhances the partitioning of Cu from melt into magmatic volatile phases.  相似文献   

6.
7.
8.
Fourier transformed infrared (FTIR) spectroscopy was used to characterize arsenate-ferrihydrite sorption solids synthesized at pH 3-8. The speciation of sorbed arsenate was determined based on the As-O stretching vibration bands located at 650-950 cm−1 and O-H stretching vibration bands at 3000-3500 cm−1. The positions of the As-O and O-H stretching vibration bands changed with pH indicating that the nature of surface arsenate species on ferrihydrite was strongly pH dependent. Sorption density and synthesis media (sulfate vs. nitrate) had no appreciable effect. At acidic pH (3, 4), ferric arsenate surface precipitate formed on ferrihydrite and constituted the predominant surface arsenate species. X-ray diffraction (XRD) analyses of he sorption solids synthesized at elevated temperature (75 °C), pH 3 clearly showed the development of crystalline ferric arsenate (i.e. scorodite). In neutral and alkaline media (pH 7, 8), arsenate sorbed as a bidentate surface complex (in both protonated FeO2As(O)(OH) and unprotonated forms). For the sorption systems in slightly acidic media (pH 5, 6), both ferric arsenate and surface complex were probably present on ferrihydrite. It was further determined that the incorporated sulfate in ferrihydrite during synthesis was substituted by arsenate and was more easily exchangeable with increasing pH.  相似文献   

9.
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H2O-CO2-NaCl-CaCO3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H+, Na+, Ca2+, , Ca(OH)+, OH, Cl, , , CO2(aq) and CaCO3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T-P-m range, hence calcite solubility, CO2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data.One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility.The functionality of pH value, alkalinity, CO2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl(aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.  相似文献   

10.
Batch experiments, combined with in situ spectroscopic methods, are used to examine the coprecipitation of Cr(VI) with calcite, including partitioning behavior, site-specific distribution of Cr on the surface of calcite single crystals, and local coordination of Cr(VI) in the calcite structure. It is found that the concentration of Cr incorporated in calcite increases with increasing Cr concentration in solution. The calculated apparent partition coefficient, , is highest at low Cr solution concentration, and decreases to a constant value with increasing Cr solution concentration. DIC images of the surface of calcite single crystals grown in the presence of exhibit well-defined growth hillocks composed of two pairs of symmetrically nonequivalent vicinal faces, denoted as + and −, which reflect the orientation of structurally nonequivalent growth steps. Micro-XRF mapping of the Cr distribution over a growth hillock shows preferential incorporation of Cr into the—steps, which is considered to result from differences in surface structure geometry. XANES spectra confirm that incorporated Cr is hexavalent, and no reduction of Cr(VI) in the X-ray beam was observed up to 2 days at room temperature. EXAFS fit results show the incorporated Cr(VI) has the expected first shell of 4 O at ∼1.64 ± 0.01 Å, consistent with . Best fit results show that the second shell is split with ∼2.5 Ca at ∼3.33 ± 0.05 and ∼2.2 Ca at ∼3.55 ± 0.05 Å, which confirms the incorporation of chromate into calcite. Consideration of possible local coordination indicates that significant distortion or disruption is required to accommodate in the calcite structure.  相似文献   

11.
Hexagonal birnessite (δ-MnO2) is a close analogue to the dominant phase in hydrogenetic marine ferromanganese crusts and nodules. These deposits contain ∼0.25 wt.% Cu which is believed to be scavenged from the overlying water column where Cu concentrations are near 0.1 μg/L. Here, we measured the sorption of Cu on δ-MnO2 as a function of pH and surface loading. We characterized the nature of the Cu sorption complex at pH 4 and 8 using EXAFS spectroscopy and find that, at pH 4, Cu sorbs to birnessite by inner-sphere complexation on the {0 0 1} surface at sites above Mn vacancies to give a three to fourfold coordinated complex with 6 Mn neighbors at ∼3.4 Å. At pH 8, however, we find that some Cu has become structurally incorporated into the MnO2 layer by occupying the vacancy sites to give 6 Mn neighbors at ∼2.91 Å. Density functional calculations on and clusters predict a threefold coordinated surface complex and show that the change from surface complexation to structural incorporation is a response to protonation of oxygens surrounding the vacancy site. Consequently, we propose that the transformation between sorption via surface complex and vacancy site occupancy should be reversible. By fitting the Cu sorption as a function of surface loading and pH to the formation of the observed and predicted surface complex, we developed a surface complexation model (in the basic Stern approximation) for the sorption of Cu onto birnessite. Using this model, we demonstrate that the concentration of inorganic Cu in the deep ocean should be several orders of magnitude lower than the observed total dissolved Cu. We propose that the observed total dissolved Cu concentration in the oceans reflects solubilization of Cu by microbially generated ligands.  相似文献   

12.
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H2O-CO2-NaCl-CaCO3-CaSO4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca2+, , , and CaSO4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results.Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.  相似文献   

13.
In this study, we applied time-resolved synchrotron X-ray diffraction (TRXRD) to develop kinetic models that test a proposed two-stage reaction pathway for cation exchange in birnessite. These represent the first rate equations calculated for cation exchange in layered manganates. Our previous work has shown that the substitution of K, Cs, and Ba for interlayer Na in synthetic triclinic birnessite induces measurable changes in unit-cell parameters. New kinetic modeling of this crystallographic data supports our previously postulated two-stage reaction pathway for cation exchange, and we can correlate the kinetic steps with changes in crystal structure. In addition, the initial rates of cation exchange, R3 min−1), were determined from changes in unit-cell volume to follow these rate laws: R = 1.75[]0.56, R = 41.1[]1.10, R = 1.15[]0.50. Thus, the exchange rates for Na in triclinic birnessite decreased in the order: Cs ? K > Ba. These results are likely a function of hydration energy differences of the cations and the preference of the solution phase for the more readily hydrated cation.  相似文献   

14.
Grain size- and crystallographic direction-dependence are among the fundamental characteristics of crystal solubility. However, such important material properties are routinely ignored and solubility is often conveniently approximated by a solubility product. In this study, we attempt to outline the relationship between solubility and solubility product using thermodynamic arguments, and to provide observations that demonstrate the occurrence of circumstances where the solubility product cannot properly approximate crystal solubility. Theoretical analysis shows that solubility is always greater than solubility product, but the difference is inversely related to the grain size. Furthermore, the difference can be crystallographic direction specific if the total surface energy change upon the attachment of an individual growth unit is nonequivalent for each symmetrically unrelated crystal faces. In situ AFM experiments conducted on the cleavage face of calcite demonstrate that the steps exhibit direction- and length-dependent behavior. Specifically, the measured critical step lengths are consistent with the predicted inverse relationship to saturation states. Moreover, step retreat at and advance at are observed simultaneously in a narrow range of saturation at near equilibrium conditions, indicating the existence of direction specific solubility. Whereas these findings justify the rationale for approximating solubility by solubility product in cases where large crystals are concerned, the results imply that the size and direction effect should not be ignored if nanocrystal growth/dissolution is the subject of interest.  相似文献   

15.
16.
The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. To determine if and how temperature is kinetically responsible for the amount of Mg incorporated in calcite, we quantified the influence of temperature and specific dissolved components on the complex mechanism of calcite precipitation in seawater. A kinetic study was carried out in artificial seawater and NaCl-CaCl2 solutions, each having a total ionic strength of 0.7 M. The constant addition technique was used to maintain [Ca2+] at 10.5 mmol kg−1 while [] was varied to isolate the role of this variable on the precipitation rate of calcite.Our results show that the overall reaction of calcite precipitation in both seawater and NaCl-CaCl2 solutions is dominated by the following reaction:
  相似文献   

17.
18.
19.
Seeded calcite growth experiments were conducted at fixed pH (10.2) and two degrees of supersaturation (Ω = 5, 16), while varying the Ca2+ to solution ratio over several orders of magnitude. The calcite growth rate and the incorporation of Sr in the growing crystals strongly depended on the solution stoichiometry. At a constant degree of supersaturation, the growth rate was highest when the solution concentration ratio, r = [Ca2+]/[], equaled one, and decreased symmetrically with increasing or decreasing values of r. This behavior is consistent with the kink growth rate theory for non-Kossel crystals, assuming that the frequency factors for attachment to kink sites are the same for the cation and anion. Measured Sr partition coefficients, DSr, ranged from 0.02 to 0.12, and correlated positively with the calcite growth rate.  相似文献   

20.
An empirical global core-top calibration that relates the alkenone unsaturation index to mean annual SST (maSST) is statistically the same as that defined for a subarctic Pacific strain of Emiliania huxleyi (CCMP1742) grown exponentially in batch culture under isothermal conditions. Although both equations have been applied widely for paleoSST reconstruction, uncertainty still stems from two key ecological factors: variability in the details of biosynthesis among genetically distinct alkenone-producing strains, and impacts of non-thermal physiological growth factors on . New batch culture experiments with CCMP1742 here reveal that diverge systematically from the core-top calibration in response to nutrient depletion and light deprivation, two physiological stresses experienced by phytoplankton populations in the real ocean. Other aspects of alkenone/alkenoate composition also respond to these stresses and may serve as signatures of such effects, providing an opportunity to detect, understand, and potentially correct for such impacts on the geologic record. A test case documents that sediments from the Southeast Pacific display the alkenone/alkenoate compositional signature characteristic of cells physiologically stressed by light deprivation. Such an observation could be explained if marine snow provided a major vector of sedimentation for these biomarkers. Late Pleistocene records in the Southeast Pacific yield plausible paleotemperature histories of ice-age cooling, but ice-age alkenone/alkenoate signatures fall outside the range of modern calibration samples of similar . They better match core-top samples deposited beneath waters characterized by much cooler maSST, suggesting key features of ice-age ecology for alkenone-producing haptophytes were different from today, and that the index taken alone may misgauge the total range of ice-age cooling at these locations. Analysis of the full spectrum of alkenone/alkenoate compositions preserved in sediments opens up a new opportunity that may improve the accuracy of paleotemperature estimates based on simple analysis and help resolve longstanding disagreements between various paleotemperature reconstruction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号