首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite film structures of common plastic polymers including polypropylene (PP) or poly(vinyl chloride) (PVC) with whey protein isolate (WPI) coatings may be obtained by a casting method. Optical and surface properties of the resulting WPI‐coated plastic films, as affected by protein concentration and plasticizer type, were investigated to examine the biopolymer coating effects on surface modification with polymeric substrates of opposite polarity. The measured properties involved specular gloss, color, contact angle, and critical surface energy. Regardless of the substrates, WPI‐coated films possessed excellent gloss and no color, as well as good adhesion between the coating and the substrate when an appropriate plasticizer was added to the coating formulations. The protein concentration did not significantly affect gloss of WPI‐coated plastic films. Among five plasticizers applied, sucrose conferred the most highly reflective and homogeneous surfaces to the coated films. The WPI coatings were very transparent and the coated films with various protein concentrations and plasticizers showed no noticeable changes in color. Experimental results suggest that WPI coatings formulated with a proper plasticizer can improve the visual characteristics of the polymeric substrate and enhance water wettability of the coated plastic films. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 335–343, 2004  相似文献   

2.
The appearance or printing quality of paper surfaces is mostly characterized by their glossiness, measured with a glossmeter as specular reflectance. The gloss properties of a base paper substrate can be improved after application of a poly(styrene‐co‐maleimide) nanoparticle coating under pure conditions or in the presence of different vegetable oils. The specular gloss properties of 11 different nanoparticle paper coatings have been determined under 75° and 85° incident light angles, with good relation between values along parallel (machine) and perpendicular (transverse) direction. The gloss properties for the different coatings have been further related to the surface topography. Therefore, the statistical and spatial surface roughness parameters have been studied in detail at two length scales including non‐contact profilometry (1 × 1 mm2) and atomic force microscopy (2 × 2 μm2). Based on values of the Rayleigh parameter for non‐contact profilometry, the surfaces can be considered as optically rough. The gloss values cannot be directly related to statistical surface roughness parameters. Otherwise, an experimental power‐law model for gloss has been proposed as a function of (β/Sq) with correlation length β and root‐mean‐square roughness Sq. A best‐fit model illustrates that gloss properties of various nanoparticle paper coatings mainly relate to the spatial surface roughness parameters determined from non‐contact profilometry. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 596–610, 2016  相似文献   

3.
This study aimed to determine the effect of accelerated weathering on gloss, surface hardness and colour changes of Scots pine (Pinus sylvestris L.). Test samples were impregnated with Adolit KD‐5, Wolmanit CX‐8 and Celcure AC‐500 covered with cellulosic and polyurethane varnishes. The results showed that the values of surface hardness and gloss increased after accelerated weathering. While the surface hardness of Scots pine was increased for impregnated and polyurethane‐coated varnish, it decreased for impregnated and cellulosic varnish‐coated Scots pine after 1000 hours of accelerated weathering exposure. Copper‐based chemical impregnation and varnish coating developed the gloss of Scots pine specimens relative to the surface characteristics observed in single‐coated Scots pine specimens. While the most appropriate chemical was Celcure AC‐500 for surface hardness, it was Adolit KD‐5 for the gloss of Scots pine after 1000 hours of accelerated weathering exposure. Wood specimens impregnated prior to the application of varnish were more effective in stabilising the colour of Scots pine than Scots pine only coated with varnish. Polyurethane varnish‐treated Scots pine showed better colour stability for each partial and total accelerated weathering exposure period. The total colour changes were lowest for polyurethane varnish‐coated Scots pine impregnated with Celcure AC‐500 after 1000 hours of accelerated weathering exposure.  相似文献   

4.
The influence of substrate absorbency on coating surface chemistry   总被引:5,自引:0,他引:5  
The composition of the top surface of a coating layer can influence its functional properties or subsequent processing steps. The effect of the substrate absorbency on the coating surface chemistry is reported. Different coating systems containing a kaolin clay pigment, fine or coarse precipitated calcium carbonates, and a common latex binder were examined. The influence of a soluble polymer added into the coating was characterized. The surface chemistry was measured with attenuated total internal reflectance (ATR) and X-ray photoelectron spectroscopy (XPS).

Absorbent substrates generate bulky coatings with high voids and low gloss. Rapid dewatering by the absorbent substrate pulls the small particles, like latex binder, away from the top layers causing a low latex concentration at the surface. On non-absorbent substrates, the addition of the soluble polymer generates coating layers with higher void volume, lower gloss, and lower latex concentrations at the coating surface. However, on absorbent substrates, polymer addition causes coatings with lower void volumes and higher gloss. In this case, the rapid dewatering and mobility of particles is reduced by the polymer, which helps to retain the small particles at the surface. As a result, latex concentration at the surface increases with polymer addition on absorbent substrates.  相似文献   


5.
In the last few years, interest and demand of high bright paper have forced paper manufacturers to think new ways to improve brightness and whiteness of coated paper. Pigment coating is widely used to enhance the optical properties such as brightness, whiteness, and gloss of paper and paperboard. These optical properties are the most important for end user and also determine the final cost of coated paper. Calcium sulphate has inherent better optical properties compared to other conventional pigments for example ground calcium carbonate, precipitated calcium carbonate and kaolin clay. The present study was carried out with an aim to synthesize calcium sulphate using waste procured from phosphoric acid industry and to study its impact on the rheology of coating color as well as optical properties of coated paper. Addition of calcium sulphate improved the water retention property of coating color which can be helpful for improving the machine runnability. The results also revealed that calcium sulphate can be used as a pigment to produce coated paper of high brightness and whiteness. The brightness and whiteness of the coated paper were improved 4 and 15 points, respectively by using 50 parts of calcium sulphate as a pigment replacing clay from the coating formulation. The surface strength in terms of IGT pick value of coated sheets was found significantly comparable using calcium sulphate as pigment. The print gloss results were observed analogous with matt grade coated paper.  相似文献   

6.
Novel core‐shell latices with a partially crosslinked hydrophilic polymer core and a hard hydrophobic shell of polystyrene were prepared to improve optical properties of coated paper such as gloss and brightness. These core‐shell latices were prepared by sequential addition of a monomer mixture of styrene, n‐butylacrylate and methacrylic acid. Different crosslinkers were used to form the polymer core and in the second stage styrene to form the hard shell component. In addition, attempts were made to further improve optical properties by introducing a new polymerizable optical brightener, i.e., 1‐[(4‐vinylphenoxy)methyl]‐4‐(2‐phenylethylenyl)benzene during polymerization either into the core or into the shell. The prepared core‐shell latex particles were used as specialty plastic pigments for paper coating together with kaolin as the primary pigment. The runability of paper coating formulation by either using a laboratory scale Helicoater or pilot scale JET‐coating machine was very good. The produced coated papers were printed on both sides employing a heat set web offset (HSWO) printer to study the quality of image reproduction in terms of print gloss, print mottle, print through, etc. The core‐shell latices improved the overall print quality. Furthermore, the results demonstrated that by optimizing polymer composition one can significantly enhance the optical properties and surface smoothness of coated paper. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Kaolin in paper filling and coating   总被引:1,自引:0,他引:1  
Kaolin is the most extensively used particulate mineral in the filling and coating of paper. It improves paper appearance, which is characterized by gloss, smoothness, brightness and opacity, and of greatest significance, it improves printability. Paper is also filled with kaolin to extend fiber.The characteristics of kaolin that have the greatest influence on the quality of paper are the purity, rheology and particle geometry of the processed mineral. Generally, the most deleterious impurities for brightness of kaolin are iron oxide and titanium oxide minerals. The rheology of kaolin-binder-water suspensions at high solid: liquid ratios (as much as 65%) must be approximately Newtonian for efficient blade coating at speeds as great as 1300 meter/min. Particle geometry, defined as particle size, particle size distribution, particle shape and aggregate structure, has a dominant influence over the rheological character of kaolin slurries, as well as on the properties imparted by the kaolin to filled and coated paper.Increase in the aspect ratio of kaolin, as opposed to increase in surface area, exerts the dominant influence on the increase in low-shear viscosity. Although low-shear viscosities of undelaminated coating grades of kaolin show good correlation with surface area, the relationship breaks down for delaminated grades. Particle packing is believed to be the controlling parameter for viscosity at high rates of shear.Opacity, gloss, printability and, to a lesser extent, brightness of paper imparted by coating and filling with kaolin, are largely functions of particle size and particle size distribution. The strength of coated and filled paper generally decrease with decrease in particle size. An increase in coating void volume generally has a deleterious effect on strength.The principal commercial printing systems today are rotogravure and offset. Although other parameters are important, coating structures containing numerous voids generally give superior rotogravure printing, whereas smooth, relatively ink-impermeable surfaces are generally most favorable for offset printing.  相似文献   

8.
The hanging mercury (Hg) drop electrode (HMDE) has a classical application as a tool to study adsorption and desorption processes of surface organic films due to its: (a) atomically smooth surface and, (b) hydrophobicity at its potential of zero charge. In this study we report on a replacement of the HMDE for studying supported organic layers in the form of platinum (Pt) working electrodes fabricated using lithography techniques on which a thin film of Hg is electrodeposited. These wafer-based Pt/Hg electrodes are characterised and compared to the HMDE using rapid cyclic voltammetry (RCV) and show similar capacitance-potential profiles while being far more mechanically stable and consuming considerably less Hg over their lifetime of several months. The electrodes have been used to support self-assembled phospholipid monolayers which are dynamic surface coatings with unique dielectric properties. The issue of surface contamination has been solved by regenerating the electrode surface prior to phospholipid coating by application of extreme cathodic potentials more negative than −2.6 V (vs. Ag/AgCl). The phospholipid coated electrodes presented in this paper mimic one half of a phospholipid bilayer and exhibit interactions with the biomembrane active drug molecules chlorpromazine, and quinidine. The magnitudes of these interactions have been assessed by recording changes in the capacitance-potential profiles in real time using RCV at 40 V s−1 over potential ranges >1 V. A method for electrode coating with phospholipids with the electrodes fitted in a flow cell device has been developed. This has enabled sequential rapid cleaning/coating/interaction cycles for the purposes of drug screening and/or on-line monitoring for molecules of interest.  相似文献   

9.
Adding plate-like pigments such as talc or kaolin clay to a styrene-butadiene (SB) dispersion before coating paperboard on a pilot scale resulted in a coated material with improved water vapour barrier properties. Addition of paraffin wax further significantly reduced the water vapour permeability. A limited study was also performed using poly(vinyl alcohol) (PVA) as the matrix material and a similar result was obtained. In addition to the barrier properties, the surface characteristics (gloss, roughness, surface energy and chemical composition) and the printability of the coated substrate were evaluated. In general, it was found that the properties of the coated material were improved if the surface of the base substrate was smoothened prior to coating by a suitable surface treatment such as hot calendering or precoating. Such a treatment gave a more homogeneous coating film on the substrate. A comparison of the experimental results with the prediction of models for the effect of impermeable particles on the vapour permeability indicated that the pigments were not optimally dispersed (or oriented) in the coating layer. There is thus room for improvement. In a further series of experiments, nanoclays were incorporated into the coating layers. Exfoliation of the silicate layers was indicated in laboratory coating experiments using SB, but not on the pilot-scale coated materials. Thus no significant effects on the barrier properties were observed for such coated specimens. With PVA as the matrix polymer and low contents of the nanoclay, a marked decrease in the water vapour permeability took place, indicating a more pronounced exfoliation.  相似文献   

10.
This study investigated the effect of board type (unmodified vs. MAPE modified) on the surface quality and thickness swelling-water absorption properties of recycled high density polyethylene (HDPE) based wood plastic composites. Additionally, two commercially available coatings (cellulosic coating and polyurethane lacquer coating) were also applied to composite surfaces and their adhesion strength, abrasion and scratch resistance, and gloss values were determined. This study showed that modification of the composites with MAPE coupling agent increased the surface smoothness and reduced the water absorption and thickness swelling of the panels. Abrasion resistance of the composites was also improved through MAPE modification. Regardless of board type, higher scratch resistance and gloss values were observed for polyurethane lacquer coated samples compared to those of cellulosic varnish coated ones. Improvement of adhesion strength was also seen on SEM micrographs.  相似文献   

11.
Organic nanoparticles synthesized by imidization of styrene-maleic anhydride copolymers are deposited as a top-coating onto paper and paperboard substrates from a stable aqueous dispersion with maximum solid content of 35 wt.%. The morphology, physical characteristics and chemical surface properties of the coatings are discussed in this paper, using scanning electron microscopy, atomic force microscopy, contact angle measurements and Raman spectroscopy. Due to the high glass transition temperature of the polymer nanoparticles, a unique micro- to nanoscale structured coating is formed that favourably improves the gloss, printing properties (ink-jet printing test and off-set printing test), surface hydrophobicity (maximum water contact angle 140°) and water repellence (reduction of Cobb-values). The interaction of the nanoparticle coatings with the cellulosic paper web results in improvement of the mechanical paper strength and is attributed to hydrogen-bonding between the nanoparticles and the cellulosic fibers.  相似文献   

12.
Powder coating of engineered wood panels such as medium density fibreboards (MDF) is gaining industrial interest due to ecological and economic advantages of powder coating technology. For transferring powder coating technology to temperature-sensitive substrates like MDF, a thorough understanding of the melting, flowing and curing behaviour of the used low-bake resins is required. In the present study, thermo-analysis in combination with iso-conversional kinetic data analysis as well as rheometry is applied to characterise the properties of an epoxy-based powder coating. Neat resin and cured powder coating films are examined in order to define an ideal production window within which the resin is preferably applied and processed to yield satisfactory surface performance on the one hand and without exposing the carrier MDF too high a temperature load on the other hand to prevent the panel from deteriorating in mechanical strength. In order to produce powder coated films of high surface gloss – a feature that has not yet successfully been realized on MDF with powder coatings – a new curing technology, in-mould surface finishing, has been applied.  相似文献   

13.
Surface topography and gloss are two related properties affecting the appearance of a polymeric coating system. Upon exposure to ultraviolet (UV) radiation, the surface topography of a coating becomes more pronounced and, correspondingly, its gloss generally decreases. However, the surface factors affecting gloss and appearance are difficult to ascertain. In this article, atomic force microscopy (AFM) and laser scanning confocal microscopy (LSCM) measurements have been performed on an amine-cured epoxy coating system exposed to outdoor environments in Gaithersburg, Maryland. The formation of the protuberances is observed at the early degradation stages, followed by the appearance of circular pits as exposure continues. At long exposure times, the circular features enlarge and deepen, resulting in a rough surface topography and crack formation. Fourier Transform Infrared Spectroscopy (FTIR) study indicates that the oxidation and chain scission reactions are likely the origins of the surface morphological changes. The relationship between changes in surface roughness and gloss has been analyzed. The root mean square (RMS) roughness of the coating is related to nanoscale and microscale morphological changes in the surface of the coating as well as to the gloss retention. A near-linear dependence of RMS roughness with the measurement length scale (L) is found on a double logarithmic scale, i.e., RMS ∼ L f. The scaling factor, f, decreases with exposure time. The relationship between surface topography, on nano- to microscales, and the macroscale optical properties such as gloss retention is discussed. Moreover, a recent development in using an angle-resolved light scattering technique for the measurement of the specular and off-specular reflectance of the UV-exposed specimens is also demonstrated, and the optical scattering data are compared to the gloss and the roughness results.
Xiaohong GuEmail:
  相似文献   

14.
Greenish yellow lackluster coatings with low infrared emissivity were prepared by Prussian blue (PB) surface modified Al powders and polyurethanes. The morphology and component of PB/Al powder were characterized by scanning electron microscopy and X-ray diffractometer. The infrared emissivity, surface gloss and visible light color of PB/Al composite coating were investigated by an infrared emissometer, a glossmeter and a colorimeter, respectively. Mechanical properties of PB/Al composite coatings were studied by using adhesion test and impact strength test. The results indicate that PB/Al powder decreases not only the gloss of the coating, but also its emissivity within the wavelength range of 8–14 μm. The composite coatings have good adherence and impact strength at PB/Al content below 50 wt.%, and then the mechanical properties decrease in the PB/Al content range from 50 wt.% to 60 wt.%. By comparing PB/Al composite coating and Al powder tinting coating with the same color and surface gloss, PB/Al composite coating exhibits significant lower infrared emissivity, which is attributed to closer inter-powder distances of metallic fillers and higher electrical conductivity in the coating.  相似文献   

15.
The present paper is concerned with the coating applications of a vinyl ester resin derived from diglycidyl ether of bisphenol-A and its urethane derivative. The mild steel panels coated with the synthesized resins were evaluated for their gloss on the surface, scratch hardness and chemical resistance. The incorporation of styrene in the resin systems improves the properties of coatings remarkably.  相似文献   

16.
An acrylated epoxidized linseed oil (AELO) was synthesized from epoxidized linseed oil through ring opening of the oxirane group using acrylic acid as ring opening agent. The occurrence of the acrylate group and the ring opening of oxirane group was monitored using FT-IR spectroscopy. The AELO was mixed with three different photoinitiators at two different concentrations. Wood surfaces were coated with the mixtures, subsequently cured under UV light and the resulting surface properties of the coated samples gloss, scratch resistance, solvent resistance, and coating adhesion were characterized. The efficiency of the photoinitiators and the influence of their concentration on the rate and the extent of the curing were studied by curing the AELO mixtures under a monochromatic wavelength of 365 nm and measuring absorption spectra during the cure by real time FT-IR spectroscopy. The decrease of absorption in the measured spectra at 1406 cm−1 was used to calculate the conversion of acrylic double bonds with increasing time of UV light exposure to obtain information on the cure kinetics for each photoinitiator and concentration.  相似文献   

17.
Organic nanoparticles synthesized by imidization of styrene-maleic anhydride copolymers are deposited as a top-coating onto paper and paperboard substrates from a stable aqueous dispersion with maximum solid content of 35 wt.%. The morphology, physical characteristics and chemical surface properties of the coatings are discussed in this paper, using scanning electron microscopy, atomic force microscopy, contact angle measurements and Raman spectroscopy. Due to the high glass transition temperature of the polymer nanoparticles, a unique micro- to nanoscale structured coating is formed that favourably improves the gloss, printing properties (ink-jet printing test and off-set printing test), surface hydrophobicity (maximum water contact angle 140°) and water repellence (reduction of Cobb-values). The interaction of the nanoparticle coatings with the cellulosic paper web results in improvement of the mechanical paper strength and is attributed to hydrogen-bonding between the nanoparticles and the cellulosic fibers.  相似文献   

18.
Paper coating pigment plays an essential role in the achievement of the desired end paper qualities. Different pigment varieties are available for paper coating. Ground calcium carbonate (GCC) is the major one used frequently in coating formulations. Precipitated calcium carbonate (PCC) is gradually gaining importance in paper coating, as it can be prepared in different shapes and sizes. The present study was carried out to determine the influence of PCC pigments with different shapes and sizes on paper properties, and their limitations and advantages when blended with finer grade GCC. PCC pigments of calcite and aragonite crystalline polymorphs having rhombohedral, orthorhombic, and scalenohedral habits were selected for the study. It was observed that the viscosity and water-holding capacity of the coating color was reduced with the introduction of PCC in the coating formulation. The PCC pigments showed greater light scattering, opacity, and smoothness of the coated paper as compared to the GCC pigment. The clustered (rosette) shape of scalenohedral habit calcite PCC results in the greatest light scattering, opacity, and surface strength amongst all PCCs. The aragonite PCC of orthorhombic habit and calcite PCC of rhombohedral habit show an almost similar trend in coated paper properties with the greatest smoothness and paper gloss.  相似文献   

19.
The effects of coating color raw material variables were tested on absorbing and non-absorbing base materials. The particle size of the coating pigments was the main variable affecting the gloss of the non-absorbing base materials. Adding binders and increasing the drying temperature has a negative effect on the gloss development of both calendered and uncalendered coating layers. On calendered layers, coating layer films showed more gloss development than for coated papers, especially with coarse particles. Uncalendered calcium carbonate-coated papers have a higher PPS roughness than calendered clay-coated papers. The effectiveness of calendering, as described by “calenderability,” showed an increase in gloss with increasing number of nips, irrespective of size, and size distribution of pigment particles.  相似文献   

20.
Surface properties of a polymeric coating system have a strong influence on its performance and service life. However, the surface of a polymer coating may have different chemical, physical, and mechanical properties from the bulk. Significant progress has been made during the last three decades in the improvement of coating on materials. It has been established that polymeric blends have great potential in replacing economically many conventional materials because of their high specific strength. It is needed today, constantly, to improve the surface finish of any material for efficiency and shiny appearance in the severity of working environment. In packaging, materials having longer service lives and those are less corrosive are highly used. The effect of polymer based coating on the paper material improves its mechanical properties and flame resistance. Effect of flame retardant polymer coating illuminates the surface of the sheet. Important application of the material sheets will be for corrosion receptivity and humidity resistance of this material will certainly improve. Blends of PMM/PVDF are mainly used to improve piezoelectric properties of PVDF. In the present study we report the measurement of surface properties of thin layer of polymer blend coated on the cardboard sheet substrate material. Polymer blend solutions of PMMA/PVDF was prepared at 90/10 (w/w) proportions in miscible solvent of toluene and DMF. Thin film was prepared on the surface of cardboard by dipping the cardboard material in the solution. Thickness of the dried polymer coated paper sheet was measured to see uniformity of coating and for different concentrations. Surface properties such as flexibility index, yellowness, and gloss reflectance were also measured. The study on these polymer coated paper will help in improving the surface property of paper as well as its use in packaging. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4167–4171, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号