首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Sivas Basin, located on the Central Anatolian Plateau in Turkey, is an elongate Oligo‐Miocene basin that contains numerous salt‐walled mini‐basins. Through field analysis, including stratigraphic section logging, facies analysis and geological mapping, a detailed tectono‐stratigraphic study of the Emirhan mini‐basin and its 2·6 km thick sediment fill has been undertaken. Three main palaeoenvironments are recognized – playa‐lake, braided stream and lacustrine – each corresponds to a relatively long‐lived depositional episode within a system that was dominated overall by the development of a distributive fluvial system. At local scale, this affects the geometry of the succession and influences facies distributions within preserved sequences. Sequences affected by wedge geometries are characterized by localized channelized sandstone bodies in the area of maximum subsidence and these pass laterally to floodplain mudstone towards the diaper; several internal unconformities are recognized. By contrast, sequences affected by hook geometries display narrow and steep drape‐fold geometries with no evidence of lateral facies change and apparent conformity in the preserved succession. The sediment fill of the Emirhan mini‐basin records the remobilization of diapir‐derived detritus and the presence of evaporitic bodies interbedded within the mini‐basin, implying the growth of salt walls expressed at the surface as palaeo‐topographic highs. The mini‐basin also records the signature of a regional change in stratigraphic assemblage, passing from playa‐lake facies to large‐scale highly amalgamated fluvial facies that represent progradation of the fluvial system. The initiation and evolution of this mini‐basin involves a variety of local and regional controls. Local factors include: (i) salt withdrawal, which influenced the rate and style of subsidence and consequently temporal and spatial variation in the stratigraphic assemblage and the stratal response related to halokinesis; and (ii) salt inflation, which influenced the topographic expression of the diapirs and consequently the occurrence of diapir‐derived detritus intercalated within the otherwise clastic‐dominated succession.  相似文献   

2.
Integrated fluvial sequence stratigraphic and palaeosol analysis can be used to better reconstruct depositional systems, but these approaches have not been combined to examine halokinetic minibasins. This study characterizes the temporal and spatial patterns of lithofacies and palaeosols in a sequence stratigraphic framework to reconstruct a model of minibasin evolution and identify halokinetic influences on fluvial deposition. This research documents fluvial cycles and stratigraphic hierarchy, palaeosol maturity and apparent sediment accumulation rates in the Chinle Formation within the Big Bend minibasin. This study also uses palaeosols to help identify fluvial aggradational cycle (FAC) sets. The Chinle is divided into two hectometre‐scale (102 m) fluvial sequences, six decametre‐scale (101 m) FAC sets, and variable numbers of metre‐scale FACs depending on proximity to the minibasin. Ten pedotypes representing 225 palaeosol profiles are recognized. The pedotypes include palaeosols similar to modern Entisols, Inceptisols, Aridisols, Vertisols and Alfisols. A maturity index (1–5) is assigned to each pedotype to assess its variability in palaeosol development. Estimated palaeosol development time is used to approximate apparent sediment accumulation rates. Increased subsidence resulted in a greater number and thicker FACs, thicker FAC sets and fluvial sequence sections, and lithofacies associations reflecting more rapid sedimentation along the minibasin axis. Palaeocurrent indicators converge towards the minibasin axis and indicate that it formed and drifted through time. Relative palaeosol maturity is inversely related to stratal thickness, and decreases towards the minibasin where episodic burial by fluvial sediment was more frequent. Metre‐scale FACs are most abundant towards the minibasin axis, and locally have Entisols and Inceptisols developed upon their upper boundaries reflecting increased sediment accumulation rates. Areas outside the minibasin are characterized by fewer FACs that are associated with more mature palaeosols. Palaeosol‐derived apparent sediment accumulation rates are as much as two orders of magnitude greater within the minibasin than in marginal areas. The combined stratigraphic, palaeocurrent and palaeosol evidence is used to develop a model for the evolution of the Big Bend minibasin that illustrates the halokinetic affect on fluvial and landscape processes.  相似文献   

3.
The Salvan‐Dorénaz Basin formed during the Late Palaeozoic within the Aiguilles‐Rouges crystalline basement (Western Alps) as an asymmetric, intramontane graben elongated in a NE–SW direction and bounded by active faults. At least 1700 m of fluvial, alluvial fan and volcanic deposits provide evidence for a strong tectonic influence on deposition with long‐term, average subsidence rates of > 0·2 mm yr?1. The early basin fill was associated with coarse‐grained alluvial fans that were dominated by braided channels (unit I). These issued from the south‐western margin of the basin. The fans then retreated to a marginal position and were overlain by muddy floodplain deposits of an anastomosed fluvial system (unit II) that drained towards the NE. Deposition of thick muds resulted from a reduction in the axial fluvial gradient caused by accelerated tectonic subsidence. Overlying sand‐rich meandering river deposits (unit III) document a reversal in the drainage direction from the NE to the SW caused by synsedimentary tectonism, reflecting large‐scale topographic reorganization in this part of the Variscides with subsidence now preferentially in the W and SW and uplift in the E and NE. Coarse‐grained alluvial fan deposits (unit IV) repeatedly prograded into, and retreated from, the basin as documented by coarsening‐upward cycles tens of metres thick reflecting smaller scale tectonic cycles. Volcanism was active throughout the evolution of the basin, and U/Pb isotopic dating of the volcanic deposits restricts the time of basin development to the Late Carboniferous (308–295 Ma). 40Ar/39Ar ages of detrital white mica indicate rapid tectonic movements and exhumation of the nearby basement. In unit I, youngest ages are close to that of the host sediment, but the age spectrum is wide. In unit II, high subsidence and/or sedimentation rates coincide with very narrow age spectra, indicating small, homogeneous catchment areas. In unit III, age spectra became wider again and indicate growing catchment areas.  相似文献   

4.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   

5.
The sea floor of intraslope minibasins on passive continental margins plays a significant role in controlling turbidity current pathways and the resulting sediment distribution. To address this, laboratory analogue modelling of intraslope minibasin formation is combined with numerical flow simulations of multi‐event turbidity currents. This approach permits an improved understanding of evolving flow–bathymetry–deposit interactions and the resulting internal stacking patterns of the infills of such minibasins. The bathymetry includes a shelf to slope channel followed by an upper minibasin, which are separated by a confining ridge from two lower minibasins that compares well with analogous bathymetries reported from natural settings. From a wider range of numerical flow experiments, a series of 100 consecutive flows is reported in detail. The turbidity currents are released into the channel and upon reaching the upper minibasin follow a series of stages from short initial ponding, ‘filling and spilling’ and an extended transition to long retrogradational ponding. Upon reaching the upper minibasin floor, the currents undergo a hydraulic jump and therefore much sediment is deposited in the central part of the minibasin and the counterslope. This modifies the bathymetry such that in the fill and spill stage, flow stripping and grain‐size partitioning cause some finer sediment to be transported across the confining ridge into the lower minibasins. Throughout the basin infill process, the sequences retrograde upstream, accompanied by lateral switching into locally formed depressions in the upper minibasin. After the fill and spill stage, significant deposition occurs in the channel where retrograding cyclic steps with wavelengths of 1 to 2 km develop as a function of pulsating flow criticality. These results are at variance with conventional schemes that emphasize sequential downstream minibasin filling through ponding dominated by vertical aggradation. Comparison of these results with published field and experimental examples provides support for the main conclusions.  相似文献   

6.
The late Ediacaran Billy Springs Formation is a little‐studied, mudstone‐dominated unit deposited in the Adelaide Rift Complex of South Australia. Sediments are exposed in an approximately 11 km × 15 km synclinal structure interpreted as a salt‐withdrawal minibasin. The stratigraphic succession is characterized by convolute‐laminated slump deposits, rhythmically laminated silty mudstones, rare diamictites and fining‐upward turbidite lithofacies. Lithofacies are the product of deposition in a deepwater slope or shelf setting, representing one of the few such examples preserved within the larger basin. Although exact correlations with other formations are unclear, the Billy Springs Formation probably represents the distal portion of a highstand systems tract, and is overlain by coarser sediments of the upper Pound Subgroup. Diamictite intervals are interpreted to be the product of mass flow processes originating from nearby emergent diapirs, in contrast to previous studies that suggest a glacial origin for extrabasinal clasts. Within the spectrum of outcropping minibasins around the world, the sediments described here are unique in their dominantly fine‐grained nature and overall lithological homogeneity. Exposures such as these provide an opportunity to better understand the sedimentological processes that operate in these environments, and provide an analogue for similar settings in the subsurface that act as hydrocarbon reservoir‐trap systems.  相似文献   

7.
Fluvial systems and their preserved stratigraphic expression as the fill of evolving basins are controlled by multiple factors, which can vary both spatially and temporally, including prevailing climate, sediment provenance, localized changes in the rates of creation and infill of accommodation in response to subsidence, and diversion by surface topographic features. In basins that develop in response to halokinesis, mobilized salt tends to be displaced by sediment loading to create a series of rapidly subsiding mini‐basins, each separated by growing salt walls. The style and pattern of fluvial sedimentation governs the rate at which accommodation becomes filled, whereas the rate of growth of basin‐bounding salt walls governs whether an emergent surface topography will develop that has the potential to divert and modify fluvial drainage pathways and thereby dictate the resultant fluvial stratigraphic architecture. Discerning the relative roles played by halokinesis and other factors, such as climate‐driven variations in the rate and style of sediment supply, is far from straightforward. Diverse stratigraphic architectures present in temporally equivalent, neighbouring salt‐walled mini‐basins demonstrate the effectiveness of topographically elevated salt walls as agents that partition and guide fluvial pathways, and thereby control the loci of accumulation of fluvial successions in evolving mini‐basins: drainage pathways can be focused into a single mini‐basin to preserve a sand‐prone fill style, whilst leaving adjoining basins relatively sand‐starved. By contrast, over the evolutionary history of a suite of salt‐walled mini‐basins, region‐wide changes in fluvial style can be shown to have been driven by changes in palaeoclimate and sediment‐delivery style. The Triassic Moenkopi Formation of the south‐western USA represents the preserved expression of a dryland fluvial system that accumulated across a broad, low‐relief alluvial plain, in a regressive continental to paralic setting. Within south‐eastern Utah, the Moenkopi Formation accumulated in a series of actively subsiding salt‐walled mini‐basins, ongoing evolution of which exerted a significant control on the style of drainage and resultant pattern of stratigraphic accumulation. Drainage pathways developed axial (parallel) to salt walls, resulting in compartmentalized accumulation of strata whereby neighbouring mini‐basins record significant variations in sedimentary style at the same stratigraphic level. Despite the complexities created by halokinetic controls, the signature of climate‐driven sediment delivery can be deciphered from the preserved succession by comparison with the stratigraphic expression of part of the system that accumulated beyond the influence of halokinesis, and this approach can be used to demonstrate regional variations in climate‐controlled styles of sediment delivery.  相似文献   

8.
Excavations of deposits filling a closed basin within glacial drift at Church Moss, Davenham, near Northwich (Cheshire, England) revealed a sequence of Late‐glacial and Early Holocene sediments. Analyses of pollen and plant and invertebrate macrofossils were undertaken, together with loss‐on‐ignition analyses and a programme of AMS radiocarbon dating, to provide a record of changing biostratigraphy and climatic and ecological regimes. The infilling of features identified as frost‐cracks in the till flooring the basin gave remains that reflected conditions of extreme cold towards the end of the Devensian. The pollen record from a 3.5 m sequence of peat towards the deepest part of the basin, supported by radiocarbon dates, shows that organic deposition was initiated during the Late‐glacial Interstadial and continued into the early part of the Holocene. There was some evidence for a cool episode during the interstadial, with amelioration prior to the rapid onset of the tundra conditions of the Loch Lomond Stadial. Following the stadial, amelioration was rapid. There was evidence from both central and marginal sequences for a mosaic of fen dominated by sedges and often also mosses, with short‐lived small pools through much of the succession. Change to terrestrial conditions proceeded intermittently, probably as a result of subsidence caused by solution of underlying salt‐bearing strata. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
上扬子克拉通北部晚古生代-中三叠世的沉积盆地是在勉-略洋盆南侧发展起来的被动大陆边缘盆地, 在泥盆纪-中二叠世以稳定沉降为主, 向北以碳酸盐岩缓坡与台地向勉略洋盆过渡; 中二叠世末期受峨眉地裂运动影响形成隆坳相间的格局; 早-中三叠世构造体制由伸展变为挤压, 沉积建造由开阔海碳酸盐岩台地逐渐向半局限台地、半封闭海湾膏盐湖相以及陆相碎屑岩含煤岩系过渡.该陆缘盆地经历了晚三叠世上扬子北缘前陆盆地、中侏罗世-早白垩世川西、川北前陆盆地, 以及晚白垩世至今构造残留盆地的改造.其中, 晚三叠世须三-须六期上扬子北缘前陆盆地的前缘隆起大致沿汶川、剑阁和万源一线分布.热年代学分析结果表明, 汶川、剑阁和万源一线以南的上二叠统烃源岩在早中生代始终处于埋藏增温状态, 只是自晚白垩世才进入抬升降温阶段, 呈"同代"烃源岩的特征; 而汶川、剑阁和万源一线以北的龙门山、米仓山和大巴山山前冲断地区, 上二叠统烃源岩则围绕生烃窗经历了多次增温和降温过程, 热演化历史复杂, 呈"隔代"烃源岩的特征.因此, 对于上扬子克拉通北部晚古生代-中三叠世陆缘盆地的勘探, 汶川、剑阁和万源一线以南比其北侧更有利.  相似文献   

10.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

11.
The isotopic composition of evaporites can shed light on their environment of precipitation and their subsequent recycling processes. In this study, we performed Sr, O and S isotopic analyses on evaporitic sulphates in the halokinetic Sivas Basin. The main objectives were to decipher the age and origin of the evaporites responsible for the salt tectonics, and to test whether diapir dissolution acts as the source of younger evaporitic layers in continental mini‐basins. The Sr isotopes demonstrate that the first evaporites precipitated from seawater during the Middle–Late Eocene. The similar isotopic values measured in the halokinetic domain confirm that the Eocene evaporites triggered the salt tectonics and were continuously recycled in Oligo‐Miocene mini‐basins as lacustrine to sabkha evaporites. Modern halite precipitates suggest that the dissolution and recycling of diapiric halite is ongoing. This study demonstrates the efficiency of isotopic analyses in constraining evaporite recycling processes in continental halokinetic domains.  相似文献   

12.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

13.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   

14.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

15.
The Miocene Gorgoglione Flysch Formation records the stratigraphic product of protracted sediment transfer and deposition through a long‐lived submarine channel system developed in a narrow and elongate thrust‐top basin of the Southern Apennines (Italy). Channel‐fill deposits are exposed in an outcrop belt approximately 500 m thick and 15 km long, oriented oblique to the palaeoflow, which was roughly south‐eastward. These exceptional exposures of channel‐fill strata allow the stacking architectures and the evolution of the channel system to be analyzed at multiple scales, enabling the effects of syn‐sedimentary thrust tectonics and basin confinement on the depositional system development to be deciphered. Two end‐member types of elementary channel architecture have been identified: high‐aspect‐ratio, weakly‐confined channels, and low‐aspect‐ratio, incisional channels. Their systematic stacking results in a complex pattern of seismic‐scale depositional architectures that determines the stratigraphic framework of the deep‐water system. From the base of the succession, two prominent channel complex sets have been recognized, namely CS1 and CS2, consisting of amalgamated incisional channel elements and weakly‐confined channel elements. These channelized units are overlain by isolated incisional channels, erosional into mud‐prone slope deposits. The juxtaposition of different channel architectures is interpreted to have been governed by regional thrust‐tectonics, in combination with a high subsidence rate that promoted significant aggradation. In this scenario, the alternating ‘in sequence’ and ‘out of sequence’ tectonic pulses of the basin‐bounding thrusts controlled the activation of coarse‐clastic inputs in the basin and the resulting stacking architectures of channelized units. The tectonically‐driven confinement of the depositional system limited the lateral offset in channel stacking, preventing large‐scale avulsions. This study represents an excellent opportunity to analyze the stratigraphic evolution of a submarine channel system in tectonically‐active settings from an outcrop perspective. It should find wide applicability in analogous depositional systems, whose stratigraphic architecture has been influenced by tectonically‐controlled lateral confinement and associated lateral tilting.  相似文献   

16.
根据大量煤田钻孔和地质填图资料,应用回剥技术分析研究了沁水盆地中北部的沉降史。结果表明,石炭-二叠纪以来,研究区主要经历了3期沉降和2期抬升:晚石炭世-中二叠世的缓慢沉降;晚二叠世-三叠纪的快速大幅沉降;侏罗纪-白垩纪,燕山运动引起的隆升剥蚀;新生代以来,受喜山运动影响的隆升剥蚀;新近纪-第四纪的快速沉降。自晚古生代以来,沉降中心大体由南向北迁移,东部抬升剥蚀量较西部大,最大剥蚀厚度超过1 000 m。   相似文献   

17.
Analysing the provenance changes of synorogenic sediments in the Turpan‐Hami basin by detrital zircon geochronology is an efficient tool to examine the uplift and erosion history of the easternmost Tian Shan. We present detrital zircon U‐Pb analysis from nine samples that were collected within marginal lacustrine Middle‐Late Jurassic and aeolian‐fluvial Early Cretaceous strata in the basin. Middle‐Early Jurassic (159–172 Ma) zircons deriving from the southern Junggar dominated the Middle Jurassic sample from the western Turpan‐Hami basin, whereas Permian‐Carboniferous (270–330 Ma) zircons from the Bogda mountains were dominant in the Late Jurassic to Early Cretaceous samples. Devonian‐Silurian (400–420 Ma) and Triassic (235–259 Ma) zircons from the Jueluotage and Harlik mountains constituted the subordinate age groups in the Late Jurassic and Early Cretaceous samples from the eastern basin respectively. These provenance transitions provide evidence for uplift of the Bogda mountains in the Late Jurassic and the Harlik mountains since the Early Cretaceous.  相似文献   

18.
准噶尔盆地的类型和构造演化   总被引:35,自引:1,他引:34  
张晓东 《地学前缘》2000,7(4):431-440
准噶尔盆地的早二叠世属于裂谷还是前陆盆地 ,存在意见分歧 ;晚二叠世—老第三纪盆地的性质也不确定。文中通过对盆地构造几何学、沉降史、热史及火山岩的综合分析研究 ,对盆地类型和构造演化获得了一些新的认识 :( 1)准噶尔盆地在早二叠世为裂谷 ,晚二叠世为热冷却伸展坳陷 ,三叠纪—老第三纪为克拉通内盆地 ,新第三纪至今 ,由于印度板块与亚洲大陆碰撞才形成陆内前陆盆地。 ( 2 )对石炭纪—早二叠世的岩浆活动结合区域构造资料的研究表明 ,准噶尔地区古生代的板块运动和造山作用具软碰撞特点 ,早二叠世的裂谷盆地是在软碰撞背景下造山带伸展塌陷的产物。 ( 3)地幔热对流作用可能是软碰撞造山后伸展塌陷的主要深部动力学机制。  相似文献   

19.
Facies models that adequately represent the diverse range of fine‐grained fluvial systems are currently lacking from the literature. In this paper, the spectrum of these systems on the arid plains of western equatorial Pangea is explored, as well as the source and nature of the fine‐grained sediments. Eight fluvial elements in the Early Permian Clear Fork Formation of north‐central Texas represent channel systems up to 7 m deep with coarse basal deposits, three types of lateral‐accretion deposits and sandstone sheets, with laminated, disrupted and massive mudstones laid down in abandoned channels and on floodplains. The three fine‐grained fluvial styles represent a continuum between two end‐members: sustained lateral accretion of bedload composed of quartzose sediments and mud aggregates on point bars, and oblique accretion of suspended sediment on steep accretionary benches and banks with limited lateral migration. This spectrum is controlled, in part, by grain size and the proportion of suspended to bedload sediments. The presence of rarely documented swept ripples on exhumed accretion surfaces is attributed to rapid decline in water levels and downstream re‐entry of overbank floodwaters into the channel. Rill casts, roots and disrupted mudstones low down in channel bodies indicate periods of near‐dryness. Laterally extensive sheet sandstones were formed by episodic flows in broad, sandbed channels. The fluvial sediments were primarily intrabasinally sourced with extrabasinal sediments brought in during major floods from upland source areas or reworked from local storage in the basin, representing a supply limited system. The upward change in cement composition from mainly calcite and ankerite to dolomite and gypsum with minor celestine implies increasingly saline groundwater and progressive aridification, supporting Late Palaeozoic palaeoclimatic models. By integrating petrographic data with sedimentology, a plethora of information about ancient landscapes and climate is provided, allowing a fuller comparison between the Clear Fork Formation and modern dryland alluvial plains.  相似文献   

20.

The Upper Cambrian Owen Conglomerate of the West Coast Range, western Tasmania, comprises two upward‐fining successions of coarse‐grained siliciclastic rocks that exhibit a characteristic wedge‐shaped fill controlled by the basin‐margin fault system. Stratigraphy is defined by the informally named basal lower conglomerate member, middle sandstone member, middle conglomerate member and upper sandstone member. The lower conglomerate member has a gradational basal contact with underlying volcaniclastics of the Tyndall Group,while the upper sandstone member is largely conformable with overlying Gordon Group marine clastics and carbonates. The lower conglomerate member predominantly comprises high flow regime, coarse‐grained, alluvial‐slope channel successions, with prolonged channel bedload transport exhibited by the association of channel‐scour structures with upward‐fining packages of pebble, cobble and boulder conglomerate and sandstone, with abundant large‐scale cross‐beds derived from accretion in low‐sinuosity, multiply active braided‐channel complexes. While the dipslope of the basin is predominantly drained by west‐directed palaeoflow, intrabasinal faulting in the southern region of the basin led to stream capture and the subsequent development of axial through drainage patterns in the lower conglomerate member. The middle sandstone member is characterised by continued sandy alluvial slope deposition in the southern half of the basin, with pronounced west‐directed and local axial through drainage palaeoflow networks operating at the time. The middle sandstone member basin deepens considerably towards the north, where coarse‐grained alluvial‐slope deposits are replaced by coarse‐grained turbidites of thick submarine‐fan complexes. The middle conglomerate member comprises thickly bedded, coarse‐grained pebble and cobble conglomerate, deposited by a high flow regime fluvial system that focused deposition into a northern basin depocentre. An influx of volcanic detritus entered the middle conglomerate member basin via spatially restricted footwall‐derived fans on the western basin margin. Fluvial systems continued to operate during deposition of the upper sandstone member in the north of the basin, facilitated by multiply active, high flow regime channels, comprising thick, vertically stacked and upward‐fining, coarse‐grained conglomerate and sandstone deposits. The upper sandstone member in the south of the basin is characterised by extensive braid‐delta and fine‐grained nearshore deposits, with abundant bioturbation and pronounced bimodal palaeocurrent trends associated with tidal and nearshore reworking. An increase in base‐level in the Middle Ordovician culminated in marine transgression and subsequent deposition of Gordon Group clastics and carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号