首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在充满相变材料(石蜡)的矩形腔体内分别添加金属翅片、金属翅片和金属骨架,采用模拟方法研究纯石蜡方腔、含翅片方腔、含翅片(即金属翅片)-骨架(即金属骨架)方腔对腔体内石蜡相变传热的影响。3种方腔内的相变传热过程均为导热与自然对流传热共同作用。含翅片-骨架方腔中的石蜡熔化速率最快,且完全熔化时间最短。含翅片方腔中的石蜡熔化速率最慢,完全熔化时间最长。纯石蜡方腔中的石蜡熔化速率与完全熔化时间居中。相同加热时间,含翅片-骨架方腔的中心线温度分布最均匀,且高于其他两种方腔。含翅片-骨架方腔的中心线平均温度最先达到稳定,然后是纯石蜡方腔,最后是含翅片方腔。在3种方腔中,含翅片-骨架方腔有利于加速石蜡熔化速率,缩短熔化时间。含翅片方腔阻碍自然对流传热,不利于石蜡的相变传热。  相似文献   

2.
分别将两种金属翅片(翅片1、翅片2)加入纯相变材料(石蜡),制备复合相变材料1、复合相变材料2。容纳石蜡的方腔长×宽×高为20 mm×10 mm×20 mm,翅片1的长×宽×高为15 mm×10 mm×1 mm,翅片2是在翅片1的基础上增加6个直径为3 mm通孔,金属翅片设置在方腔内部,垂直于左壁面平行布置。石蜡的初始温度为298.15 K,相变开始之前石蜡为固态。方腔左壁面为加热面,温度恒定为338.15 K,其余各面为绝热面。采用有限元软件COMSOL Multiphysics模拟方腔内石蜡的相变过程,分析加热过程中纯相变材料、复合相变材料的液相率分布、液相率随时间变化、速度场分布。纯相变材料内,在导热和对流换热的共同作用下,石蜡从左上角开始熔化直至右下角石蜡完全熔化。方腔内金属翅片的加入可改善熔化过程的均匀性,缩短了熔化时间。纯相变材料、复合相变材料1、复合相变材料2石蜡完全熔化时间分别为302、106、90 s,复合相变材料1、2比纯相变材料完全熔化时间缩短了约64%、70%,复合相变材料2比复合相变材料1完全熔化时间缩短了约15%。在石蜡熔化初期,主要以导热为主,复合相变材料...  相似文献   

3.
以填充金属骨架的矩形石蜡方腔作为研究对象,分别选取完整方腔、单纵向断面(纵向断面与高温壁面平行)方腔、3纵向断面方腔、单横向断面(横向断面与高温壁面垂直)方腔,模拟分析金属骨架断面对石蜡熔化速率、金属骨架导热强化效果的影响。固态石蜡完全熔化时间由短到长的排序为:完整方腔、单横向断面方腔、单纵向断面方腔、3纵向断面方腔,完整方腔与单横向断面方腔的固态石蜡完全熔化时间接近。当腔体高温壁面与金属骨架断面平行时,断面对方腔内固态石蜡完全熔化时间影响极大:较大的断面宽度使熔化速率在固态石蜡熔化过程中出现明显下降;断面数量越多,固态石蜡完全熔化时间越长。当腔体高温壁面与金属骨架断面垂直时,断面对方腔内固态石蜡完全熔化时间几乎没有影响。当腔体高温壁面与金属骨架断面平行时,断面削弱金属骨架的导热强化作用。当腔体高温壁面与金属骨架断面垂直时,断面对金属骨架的导热强化作用基本没有影响。  相似文献   

4.
本文运用FLUENT软件对纵向翅片扁管进行数值模拟,对翅片的长度、高度、间距在不同进口参数下翅片表面的传热和流动性能进行比较,得出有效翅片长度受速度的影响,翅片间距与换热系数成正比,与空气流道压降成反比。为强化纵向翅片扁管传热提供参考。  相似文献   

5.
见禹  陈宝明  张明  尚荣真 《区域供热》2023,(1):29-40+52
由于相变材料传热性能差,添加翅片可以改善其传热性能。本文采用数值模拟方法研究了在石蜡中添加交叉翅片骨架的复合相变材料的热性能,分析了复合相变材料的温度变化、熔化过程和骨架在不同方向穿孔及大小对复合相变材料热行为的影响。结果表明,横小纵大穿孔骨架对复合相变材料热性能提升显著,在节约材料的同时,增加了方腔蓄热量,与纯石蜡相比,复合相变材料的熔化时间缩短了56%。交叉穿孔翅片方腔中表现为大环流伴随小环流的流动特征,铝骨架与石蜡温度特征点处会出现沉积现象,造成温度波动。  相似文献   

6.
张明  陈宝明 《区域供热》2022,(1):94-101
相变材料低导热特性影响相变传热进程,添加金属翅片可有效提高相变材料传热速率.本文通过使用有限元软件模拟相变材料的熔化过程.通过改变翅片高度、翅片厚度、翅片个数、加热壁面的温度以及将铝片换为导热性能更好的铜片来研究相变材料熔化过程.研究结果表明:增加翅片高度、翅片个数和提高热源壁面温度对强化换热效果具有显著的作用,增加翅...  相似文献   

7.
石蜡组合式腔体的长、宽、高均为30 mm,内部用两个长30 mm、宽1.5 mm、高30 mm的铜板分割成3个腔体层,每个腔体层填充不同相变温度的石蜡.组合式腔体左壁面为加热面,其余壁面均绝热.在组合式腔体长、宽、高均不变的情况下,通过改变各腔体层的宽度来改变石蜡的体积占比,共设置7种排布方式.排布方式1:各腔体层均填...  相似文献   

8.
以卧式套管式相变蓄热器为研究对象,该装置由外管、4根相同的内管、相变材料石蜡组成。外管半径为50 mm,长度为480 mm,内管半径为10 mm,长度为500 mm。外管套在4根内管外面,内管两端连接传热流体,外管和内管之间的封闭空间封装着石蜡。由于管长较短,假设传热流体进出口温度基本相同,将蓄热器简化为二维模型。通过COMSOL Multiphysics软件对二维模型进行求解,模拟当内管以正方形、菱形1、菱形2排列时,观察石蜡的熔化过程和凝固过程,分析不同排列方式对相变蓄热器传热的影响。选取传热效果最好的正方形排列方式,模拟不同内管壁温对石蜡熔化和凝固过程的影响,分析不同内管壁温对相变蓄热器传热的影响。结果表明:内管不同排列方式时,正方形排列石蜡熔化和凝固所需时间最短;正方形排列的内管壁温从313 K增加到323 K、333 K时,完全熔化时间分别缩短了43. 57%、57. 14%,内管壁温从293 K下降到283 K、273K时,完全凝固时间分别缩短了47. 57%、59. 97%。  相似文献   

9.
《Planning》2014,(2)
本文针对圆形翅片式换热管,以某厂网带炉氢气-水换热器为例,分别讨论其在设计过程中材质、翅片厚度、翅片间距和翅高等的选择,通过理论分析和计算,得到其最优解,以指导设计工作。  相似文献   

10.
为分析相变储能供热地板翅片结构影响规律,改善其在严寒地区应用效果,通过ANSYS软件建立相变储能供热地板模型进行结构优化。模拟结果仅工况4、5的相变材料完全融化。相同金属用量下工况5较工况8相变材料融化速率更快、地面温度更高。在该建筑热需求下相变储能供热地板采用150mm间距2mm厚度翅片结构效果最优。结构优化中翅片间距改善效果大于翅片厚度。通过填充翅片结构的封装方式可提高相变储能供热地板在严寒地区的应用效果。  相似文献   

11.
采用数值模拟的方法,研究了氨-钢矩形翅片重力热管冻结土壤的情况,并与传统氨-钢重力热管进行比较。从温度场和应力场进行了分析。以南京地区的春天作为土壤冻结的背景,即土壤的初始温度为286.32 K,气温为285.65 K。土壤采用粉质黏土,冻结深度为20.2 m。热管当量导热系数控制在4×10~5~9×10~5W/(m·K)。模拟结果显示,矩形翅片热管冻结土壤的效率高于传统热管。在冻结土壤过程中,矩形翅片热管所受的最大应力仅为传统热管0.98倍。且工况范围内,翅片发生的最大形变为0.23 mm。  相似文献   

12.
利用有限元方法对矩形翅片及三种几何变形片的翅片效率进行了数值求解, 求解结果经回归整理得出效率计算公式。数值计算结果表明,B2 形片虽然换热性能优于平片,但其翅片效率低于平片。C、D 形片翅片效率高于平片,且换热性能也优于平片。本文结果对高效换热翅片的优化设计研究有重要意义  相似文献   

13.
将金属骨架加入到纯相变材料(石蜡)制备复合相变材料,以纯相变材料、复合相变材料为研究对象,建立数学模型。采用有限元软件模拟相变材料的熔化过程。结果表明:均匀、x、y、z-复合相变材料完全熔化时间分别为460 s、660 s、460 s、470 s,减小x方向圆柱骨架半径可使完全熔化时间增加43%,减小y方向的圆柱骨架半径对完全熔化时间无影响,减小z方向圆柱骨架半径可使完全熔化时间增加2%。在相同时间内,复合相变材料的液相率明显高于纯相变材料,纯相变材料、均匀、xy-复合相变材料完全熔化时间分别为1 245 s、460 s、355 s,均匀、xy-复合相变材料的完全熔化时间分别比纯相变材料缩短了63.1%、71.5%。研究表明,金属骨架的加入可明显改善换热状况,xy-复合相变材料在强化换热方面优于均匀-复合相变材料。  相似文献   

14.
梁斯麒 《山西建筑》2010,36(8):213-214
利用Fluent软件,采用加密的六面体和四面体网格,建立了翅片管式换热器用矩形平翅片的三维物理模型,对空气内掠翅片表面的流动与换热进行数值模拟求解,得到其在不同风速下的速度场、温度场和努谢尔特数分布,模拟结果与实验数据进行了比较,模拟值偏大,但最大相对误差不超过10.8%。  相似文献   

15.
分别将2种三维金属骨架(面中心法金属骨架,圆柱交叉金属骨架)加入纯相变材料(石蜡)制备复合相变材料1,2。采用数值模拟方法,模拟相变传热过程,分析加热过程纯相变材料,复合相变材料的温度变化,液相率变化,速度场分布。容纳石蜡的方腔长×宽×高为5 cm×2 cm×5 cm,方腔左壁面为加热面,温度为65℃,其他壁面绝热。纯相变材料,复合相变材料的初始温度均为25℃。相同加热时间,复合相变材料的平均温度明显高于纯相变材料。对于纯相变材料,热量向方腔右侧壁面传递缓慢,加入金属骨架可加速热量向方腔右侧壁面传递。相同加热时间,复合相变材料的液相率明显高于纯相变材料。在加热初期,复合相变材料1液相率更高,添加面中心法金属骨架更有利于加速相变蓄热。纯相变材料内部传热由导热和自然对流传热共同作用形成。复合相变材料内部的传热也是由导热与自然对流传热共同作用形成。相同加热时间,复合相变材料1的液相区域要大于复合相变材料2,且相变更加均匀。对于纯相变材料,熔化过程中,石蜡的流动主要集中在加热面附近及左上角,角化现象明显。对于复合相变材料,在接近完全熔化及完全熔化状态,固态石蜡基本熔化完成,方腔内液态石蜡温度基本趋于一致,自然对流强度减弱,复合相变材料1,2内石蜡的流动并不明显。与复合相变材料2相比,复合相变材料1的速度场分布更加均匀。面中心法金属骨架的综合性能更优,适合作为相变材料的强化传热金属骨架。  相似文献   

16.
以石蜡作为相变材料,在填充率一定的前提下,分析同心套管相变蓄热装置(以下简称蓄热装置)内管数量对石蜡熔化过程的影响。以4内管为基准,考虑石蜡熔化时间、单位长度内管换热面积,确定最优的内管数量。石蜡的温度变化先快后慢,最后趋于稳定。时间相同时,内管数量越多,石蜡平均温度越高。相同时间,不同内管数量蓄热装置横截面的石蜡液相率均呈上大下小。相同时间,内管数量越大,蓄热装置内未熔化的石蜡越少。在石蜡液相率趋于稳定前,内管数量越多,相同时间石蜡液相率越大。蓄热装置的最优内管数量为10。  相似文献   

17.
方腔内相变材料受热后由于自然对流作用导致熔化不均匀,为改善此状况,采用不同偏心比的圆管、Fluent中Solidification/Melting模型进行模拟,并对照文献中实验结果,分析不同偏心比圆管、无量纲管壁温度Ste数、无量纲相变材料初温G数对熔化影响。结果表明:当偏心率增加到0.25、0.5和0.75时,熔化时间分别减小了近1/3、1/2、2/3。Ste数从0.072增加到0.134和0.228时,熔化时间分别降低了1/8和1/5。当G数从0.36降到0.23和0.11时,熔化时间分别减少了1/10、1/5。  相似文献   

18.
薛成成 《建筑节能》2016,(10):96-99
通过数值模拟方法得到常规百叶窗翅片和瘦腰型百叶窗翅片在流动传热单元内的速度场、温度场与压力场分布,比较分析二者的热力性能差异。结果表明,瘦腰型翅片百叶窗栅格较窄,截面上壁面阻力小,流速较快,边界层分离早,平均温度和出口温度均最低。瘦腰型翅片进出口压降小,阻力消耗低。Re_(Lp)=228~1 028范围内,f因子比常规翅片最大可降15.9%。相对于常规翅片,瘦腰型翅片j/f增幅高于11.3%。采用j/f 1/3作为评价指标,瘦腰型翅片综合性能仍优于常规翅片,且雷诺数越高效果越明显。  相似文献   

19.
基于场协同理论的管翅式换热器翅片效率的数值模拟研究   总被引:1,自引:0,他引:1  
本文对平直翅片管翅式换热器在考虑翅片效率和不考虑翅片效率2种情况下分别进行了层流状态下的流动和换热的三维数值模拟,研究了2种情况下Re数对换热量、Nu数及协同角的影响,并从场协同角度进行了分析。结果表明,Re数取200~1 700范围内的6个不同值,在不考虑翅片效率时,换热量分别增大了3.44%、4.76%、7.48%、12.68%、16.04%和19.56%。随着Re数的增大,翅片效率对模拟结果的影响也会增大,即在高Re数下不可忽视翅片效率对结果的影响。本文还从翅片效率的根本定义出发,得出了不同Re数下的翅片效率,为计算翅片效率提供了一个新的思路。  相似文献   

20.
《Planning》2016,(5)
采用切比雪夫配置点谱方法对多孔翅片散热器内辐射、对流和导热的耦合传热问题进行求解。在多孔翅片散热器内,导热系数、对流换热系数、表面发射率以及内热源均为温度的函数。在求解多孔翅片散热器内耦合传热的过程中,采用切比雪夫配置点谱方法对根据Darcy定律建立的多孔介质传热模型进行离散,并将微分形式的控制方程转换为代数形式的矩阵方程。另外,分析了热物性参数对无量纲温度和翅片效率的影响。通过与文献中同伦摄动法的计算结果相比较发现:切比雪夫配置点方法对多孔翅片散热器内耦合传热问题有很好的计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号