首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.  相似文献   

2.
噬菌体作为一类特殊病毒能影响癌症进程.最新研究发现部分噬菌体通过活化免疫应答,影响细胞因子的分泌,调节肿瘤微环境,有益于癌症治疗.噬菌体还可作为筛选具有诱导抗肿瘤效应的外源肽的平台.本文综述噬菌体在癌症治疗研究中的应用,寻找攻克恶性肿瘤新途径.  相似文献   

3.
C Scholtissek 《Experientia》1987,43(11-12):1197-1201
With regard to molecular epidemiology, influenza A viruses belong to the best-studied virus systems. At least two large reservoirs of influenza A viruses have been built up in nature, one in humans and another one in water fowls. The latter one is very heterogenous, consisting of viruses belonging to 13 hemagglutinin (HA) and 9 neuraminidase (NA) subtypes in almost all possible combinations. The segmented structure of the influenza virus genome allows the creation of new influenza strains by reassortment. By replacement of the HA gene of human strains new pandemic viruses can be generated (antigenic shift). The particular structure of the HA enables the human influenza A-viruses to create variants which can escape the immune response of the host (antigenic drift). The nucleoprotein is responsible for keeping those two large reservoirs apart. Mixing of genes of viruses from these two reservoirs seems to happen predominantly by double infection of pigs, which apparently are tolerant for infection by either human or avian influenza viruses. The molecular mechanisms described for influenza viruses can be explained by the particular structure of their genome and their components and cannot be generalized. Each virus has developed its own strategy to multiply and to spread.  相似文献   

4.
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.  相似文献   

5.
Influenza viruses are major human pathogens responsible for respiratory diseases affecting millions of people worldwide and characterized by high morbidity and significant mortality. Influenza infections can be controlled by vaccination and antiviral drugs. However, vaccines need annual updating and give limited protection. Only two classes of drugs are currently approved for the treatment of influenza: M2 ion channel blockers and neuraminidase inhibitors. However, they are often associated with limited efficacy and adverse side effects. In addition, the currently available drugs suffer from rapid and extensive emergence of drug resistance. All this highlights the urgent need for developing new antiviral strategies with novel mechanisms of action and with reduced drug resistance potential. Several new classes of antiviral agents targeting viral replication mechanisms or cellular proteins/processes are under development. This review gives an overview of novel strategies targeting the virus and/or the host cell for counteracting influenza virus infection.  相似文献   

6.
Generalized immunosuppression: how viruses undermine the immune response   总被引:3,自引:0,他引:3  
Following infection, a virus must battle against the host's immune response. Viruses have developed many ways to escape immune surveillance and downregulate the host's immune response. Some viruses cause a generalized immunosuppression, thereby inhibiting or depressing the immune response towards themselves as well as towards unrelated pathogens. This review will focus on the mechanisms involved in the three main human viral infections causing immunosuppression: measles, human immunodeficiency virus and cytomegalovirus. We will also discuss what has been learned from the extensively studied mouse models of viral-induced immunosuppression: lymphocytic choriomeningitis virus and Rauscher leukemia virus. All of these viruses that induce generalized immunosuppression appear to do so by very similar mechanisms. They hinder antigen presentation to T cells and/or hematopoiesis. We will highlight the similarities in the viral targets as well as present evidence for alternate mechanisms.  相似文献   

7.
The CorA family: Structure and function revisited   总被引:1,自引:0,他引:1  
The CorA family is a group of ion transporters that mediate transport of divalent metal ions across biological membranes. Metal ions are essential elements in most cellular processes and hence the concentrations of ions in cells and organelles must be kept at appropriate levels. Impairment of these systems is implied in a number of pathological conditions. CorA proteins are abundant among the prokaryotic organisms but homologues are present in both human and yeast. The activity of CorA proteins has generally been associated with the transport of magnesium ions but the members of the CorA family can also transport other ions such as cobalt and nickel. The structure of the CorA from Thermotoga maritima, which also was the first structure of a divalent cation transporter determined, has opened the possibilities for understanding the mechanisms behind the ion transport and also corrected a number of assumptions that have been made in the past.  相似文献   

8.
Proteinases are encoded by many RNA viruses, all retroviruses and several DNA viruses. They play essential roles at various stages in viral replication, including the coordinated assembly and maturation of virions. Most of these enzymes belong to one of three (Ser, Cys or Asp) of the four major classes of proteinases, and have highly substrate-selective and cleavage specific activities. They can be thought of as playing one of two general roles in viral morphogenesis. Structural proteins are encoded by retroviruses and many RNA viruses as part of large polyproteins. Their proteolytic release is a prerequisite to particle assembly; consequent structural rearrangement of the capsid domains serves to regulate and direct association and assembly of capsid subunits. The second general role of proteolysis is in assembly-dependent maturation of virus particles, which is accompanied by the acquisition of infectivity.  相似文献   

9.
C U Hellen  E Wimmer 《Experientia》1992,48(2):201-215
Proteinases are encoded by many RNA viruses, all retroviruses and several DNA viruses. They play essential roles at various stages in viral replication, including the coordinated assembly and maturation of virions. Most of these enzymes belong to one of three (Ser, Cys or Asp) of the four major classes of proteinases, and have highly substrate-selective and cleavage specific activities. They can be thought of as playing one of two general roles in viral morphogenesis. Structural proteins are encoded by retroviruses and many RNA viruses as part of large polyproteins. Their proteolytic release is a prerequisite to particle assembly; consequent structural rearrangement of the capsid domains serves to regulate and direct association and assembly of capsid subunits. The second general role of proteolysis is in assembly-dependent maturation of virus particles, which is accompanied by the acquisition of infectivity.  相似文献   

10.
Isoprenoids are synthesized in all living organisms and are incorporated into diverse classes of end-products that participate in a multitude of cellular processes relating to cell growth, differentiation, cytoskeletal function and vesicle trafficking. In humans, the non-sterol isoprenoids, farnesyl pyrophosphate and geranylgeranyl-pyrophosphate, are synthesized via the mevalonate pathway and are covalently added to members of the small G protein superfamily. Isoprenylated proteins have key roles in membrane attachment and protein functionality, have been shown to have a central role in some cancers and are likely also to be involved in the pathogenesis and progression of atherosclerosis and Alzheimer disease. This review details current knowledge on the biosynthesis of isoprenoids, their incorporation into proteins by the process known as prenylation and the complex regulatory network that controls these proteins. An improved understanding of these processe is likely to lead to the development of novel therapies that will have important implications for human health and disease. Received 5 July 2005; received after revision 17 October 2005; accepted 22 October 2005  相似文献   

11.
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.  相似文献   

12.
Ebola viruses belong to the family Filoviridae, which are among the most virulent infectious agents known. These viruses cause acute, and frequently fatal, hemorrhagic fever in humans and nonhuman primates. Currently, no vaccines or treatments are available for human use. This review describes Ebola viruses, with a particular focus on the status of research efforts to develop vaccines and therapeutics and to identify the immune mechanisms of protection.  相似文献   

13.
Molecular mimicry of viral antigens with self determinants has been proposed as one of the pathogenic mechanisms in autoimmune disease. Evidence of viral mimicry in animal models of autoimmunity is accumulating. Murine adenovirus, Semliki forest virus, lactate dehydrogenase-elevating virus, herpes simplex virus type-1, hepatitis B virus, encephalomyocarditis virus, Theiler's murine encephalomyelitis virus, Coxsackievirus and cytomegalovirus have been found to mimic physiologically important host proteins. However, epitope homology of a viral and self determinant is not in itself strong evidence for mimicry as a pathogenic mechanism. The mimicking determinant must also be capable of inducing disease in the absence of replicative virus. Animal models provide evaluation of the viral trigger, and development and therapy for autoimmune diseases. Identification of host proteins that can induce disease together with the knowledge of immune system dysregulation, genetic association and environmental factors may lead to improved immunotherapeutic strategies for human autoimmune diseases.  相似文献   

14.
15.
DING proteins, named after their conserved N-terminus, form an overlooked protein family whose members were generally discovered through serendipity. It is characterized by an unusually high sequence conservation, even between distantly related species, and by an outstanding diversity of activities and ligands. They all share a demonstrated capacity to bind phosphate with high affinity or at least a predicted phosphate-binding site. However, DING protein genes are conspicuously absent from databases. The many novel family members identified in recent years have confirmed that DING proteins are ubiquitous not only in animals and plants but probably also in prokaryotes. At the functional level, there is increasing evidence that they participate in many health-related processes such as cancers as well as bacterial (Pseudomonas) and viral (HIV) infections, by mechanisms that are now beginning to be understood. They thus represent potent targets for the development of novel therapeutic approaches, especially against HIV. The few genomic sequences that are now available are starting to give some clues on why DING protein genes and mRNAs are well conserved and difficult to clone. This could open a new era of research, of both fundamental and applied importance.  相似文献   

16.
Translation initiation is a critical step in protein synthesis. Previously, two major mechanisms of initiation were considered as essential: prokaryotic, based on SD interaction; and eukaryotic, requiring cap structure and ribosomal scanning. Although discovered decades ago, cap-independent translation has recently been acknowledged as a widely spread mechanism in viruses, which may take place in some cellular mRNA translations. Moreover, it has become evident that translation can be initiated on the leaderless mRNA in all three domains of life. New findings demonstrate that other distinguishable types of initiation exist, including SD-independent in Bacteria and Archaea, and various modifications of 5′ end-dependent and internal initiation mechanisms in Eukarya. Since translation initiation has developed through the loss, acquisition, and modification of functional elements, all of which have been elevated by competition with viral translation in a large number of organisms of different complexity, more variation in initiation mechanisms can be anticipated.  相似文献   

17.
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles’ physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.  相似文献   

18.
Messenger RNA editing and the genetic code   总被引:3,自引:0,他引:3  
R Cattaneo 《Experientia》1990,46(11-12):1142-1148
  相似文献   

19.
Avian influenza viruses infecting humans   总被引:24,自引:0,他引:24  
Avian species, particularly waterfowl, are the natural hosts of influenza A viruses. Influenza viruses bearing each of the 15 hemagglutinin and nine neuraminidase subtypes infect birds and serve as a reservoir from which influenza viruses or genes are introduced into the human population. Viruses with novel hemagglutinin genes derived from avian influenza viruses, with or without other accompanying avian influenza virus genes, have the potential for pandemic spread when the human population lacks protective immunity against the new hemagglutinin. Avian influenza viruses were thought to be limited in their ability to directly infect humans until 1997, when 18 human infections with avian influenza H5N1 viruses occurred in Hong Kong. In 1999, two human infections with avian influenza H9N2 viruses were also identified in Hong Kong. These events established that avian viruses could infect humans without acquiring human influenza genes by reassortment in an intermediate host and highlighted challenges associated with the detection of human immune responses to avian influenza viruses and the development of appropriate vaccines.  相似文献   

20.
The generation of reactive oxygen species is an inevitable aspect of aerobic life. In addition to being exposed to free radicals in the environment, aerobic organisms must also deal with oxygen radicals generated as byproducts of a number of physiological mechanisms - for example, by the mitochondrial and endoplasmic reticulum electron transport chains, and by cells of the immune system. Although most organisms are equipped with several lines of defense against oxidative stress, these defensive mechanisms are not 100% effective, and oxidatively modified forms of proteins accumulate during aging, and in many pathological conditions.?Oxidatively modified proteins can form large aggregates due to covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic and can threaten cell viability. Mammalian cells exhibit only limited direct repair mechanisms, and oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the major cytosolic proteinase, the proteasome. Interestingly, it appears that the 20S 'core' proteasome conducts the recognition and elimination of oxidized proteins in an ATP-independent and ubiquitin-independent pathway. Received 31 May 2001; accepted 26 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号