首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are probing the mechanism of the lipid selective membrane interactions of CTP:phosphocholine cytidylyltransferase (CT). We have proposed that the membrane binding domain of CT (domain M) consists of a continuous amphipathic alpha-helix between residues approximately 240-295 [Dunne, S. J., et al. (1996) Biochemistry 35, 11975-11984]. This study examined the secondary structure and membrane binding properties of synthetic peptides derived from domain M: a 62mer peptide encompassing the entire domain (Pep62), a 33mer corresponding to the N-terminal portion (PepNH1), and two 33mers corresponding to the three C-terminal 11mer repeats, one with the wild-type sequence (Pep33Ser), and one with the three serines in the nonpolar face substituted with alanine (Pep33Ala). Peptide secondary structure was analyzed by circular dichroism, and lipid interactions were analyzed by a direct vesicle binding assay, by effects of lipid vesicles on peptide tryptophan fluorescence, and by monolayer surface pressure changes. All peptides bound to vesicles as alpha-helices with selectivity for anionic lipids. Binding involved intercalation of the peptide tryptophan into the hydrophobic membrane core. PepNH1, the peptide with the highest positive charge density, showed strong selectivity for anionic lipids. PepNH1 and Pep33Ser did not bind to PC vesicles; however, the more hydrophobic peptides, Pep33Ala and Pep62, did bind to PC vesicles, with apparent partition coefficients for PC that were only approximately 1 order of magnitude lower than those for PC/PG (1/1). Our results suggest that the polar serines interrupting the nonpolar face of the amphipathic helix serve to lower the lipid affinity and thereby enhance selectivity for anionic lipids. Although diacylglycerol is an activator of the enzyme, none of the peptides responded differentially to PC/diacylglycerol vesicles versus pure PC vesicles, suggesting that domain M alone is not sufficient for the enzyme's response to diacylglycerol. Increases in surface pressure at an air-water interface indicated that the domain M peptides had strong surface-seeking tendencies. This supports a binding orientation for domain M parallel to the membrane surface. Binding of CT peptides to spread lipid monolayers caused surface pressure reductions, suggesting condensation of lipids in the formation of lipid-peptide complexes. At low monolayer surface pressures, Pep62 interacted equally with anionic and zwitterionic phospholipids. This suggests that one determinant of the selectivity for anionic lipids is the lipid packing density (area per molecule).  相似文献   

2.
The effect of different phospholipids on the kinetic behavior of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis toward PI vesicles has been investigated. Cosonicated PC/PI vesicles displayed enhanced hydrolysis of PI when less than 0. 20 mole fraction PC was incorporated into the vesicle; higher mole fractions of PC led to a decrease from the maximum activity mimicking surface dilution of substrate. Since the PC could affect PI-PLC binding to vesicles, the effect of separate PC vesicles on enzymatic hydrolysis of PI vesicles was examined. Separate phosphatidylcholine vesicles were found to activate PI-PLC-catalyzed cleavage of PI vesicles up to 7-fold. The activation was completely abolished when the PC vesicle was composed of cross-linked molecules. In the absence of enzyme, fluorescence resonance energy transfer studies did not detect any fusion between PI and PC vesicles if the total lipid concentration was below 2 mM. Higher total lipid concentrations (>20 mM) increased PC transfer between PC and PI vesicles, producing a PI vesicle population with small amounts of PC in the outer monolayer. This suggested that the activation of PI-PLC toward PI vesicles reflects the time scale of transfer of PC from PC vesicles to PI vesicles. Cosonicated PC/PI vesicles provide a measure of enzyme activity versus mole fraction of PC that can be used to estimate the extent of vesicle exchange or fusion between separate vesicle pools. The effects of other phospholipid vesicles on PI-PLC hydrolysis of PI were also examined; zwitterionic lipids were activators while anionic phospholipids inhibited activity. The results indicated that PC molecules in the PI interface allosterically bind to PI-PLC and help anchor enzyme in a more active conformation to the PI interface.  相似文献   

3.
We describe an 'in vitro' assay which allows rapid quantification of the binding of biotinated-vesicles to streptavidin immobilised on microtitre plates by estimating levels of a liposome encapsulated fluorescent molecule, rhodamine 123. It is shown that optimal vesicle binding to streptavidin occurs when a six carbon biotin spacer arm derivative of distearoylphosphatidylethanolamine (biotin-X-DSPE) is incorporated in liposomes. This alleviates steric hindrance arising due to the inclusion of small amounts of large bulky amphiphiles such as monosialoganglioside (GM1, 5 mol%) in vesicles. In contrast the ability of liposomes containing poly(ethylene glycol) derivatives of DSPE (PEG2000-DSPE, 5 mol%) to bind streptavidin was only marginally better when biotin-X-DSPE was substituted for biotin-DSPE in vesicles. It is further shown that amounts of biotinated-vesicles bound to streptavidin were minimally influenced by the fluidity of the liposome preparation when assayed at 4 degrees C. However, at elevated temperatures (37 degrees C) lipid estimates as determined by vesicle entrapped rhodamine 123 were low due to leakage of this marker from vesicles. This was shown by comparing amounts of biotinated-liposomes bound to streptavidin coated plates using the lipid marker [3H]cholesteryl hexadecyl ether to estimates determined by vesicle entrapped rhodamine 123. The 'in vitro' assay protocol described here is a general method applicable in the optimisation of other targeting protocols. In conclusion our work suggests that liposomes containing GM1 and the spacer arm derivative biotin-X-DSPE bind optimally to immobilised streptavidin which should aid in the use of biotinated-liposomes in 'in vivo' targeted delivery applications.  相似文献   

4.
We have examined the association with lipid vesicles of fluorescent lipidated peptides based on the farnesylated, polybasic carboxy-terminal region of mature K-ras4B, which functions physiologically as an autonomous plasma membrane-targeting motif. While the peptides bind to neutral lipid (phosphatidylcholine/phosphatidylethanolamine) vesicles with relatively low affinity, the vesicle-binding affinity increases exponentially as increasing amounts of anionic lipids are incorporated into the vesicle bilayers. Competitive vesicle-binding experiments reveal that the K-ras4B carboxy-terminal sequence accordingly discriminates strongly between lipid surfaces of differing surface charge, such that two lipid bilayers differing in anionic lipid content by 10 mol % will show a 45-fold preferential accumulation of the lipidated peptide in the more negatively charged surface. At the same time, the carboxyl-terminal region of K-ras4B exhibits no preferential binding to particular anionic lipids, including the polyanionic species phosphatidylinositol-4'-phosphate and phosphatidylinositol-4',5'-bisphosphate, beyond that predicted on the basis of surface-charge effects. The K-ras4B carboxyl-terminal sequence dissociates rapidly (with half-times of seconds or less) from lipid bilayers containing up to 40 mol % anionic lipid. These results suggest that the targeting of the mature K-ras4B carboxy-terminus to the plasma membrane, if it is based on interactions with plasma membrane lipids, is not mediated by a kinetic-trapping mechanism or by specific binding to particular anionic lipids but may rest on the sensitive surface potential-sensing function of this region of the protein.  相似文献   

5.
We have previously isolated 3 different populations of clathrin coated vesicles (CCV) involved in the LDL-receptor traffic in bovine adrenal cortex. We now show that each CCV type contains the transferrin-R and the CI-MPR, therefore, they provide a good model for studying the membrane organization that may govern their targeting in one of the biosynthetic, endocytic and/or recycling pathways. Transferrin--prototype of recylcing ligand--, and alpha adaptin, dynamin and the 110 kDa phosphatidylinositol-3-kinase subunit--of the trafficking machinery--were mainly detected in only 2 of the vesicle populations which could be involved in the endocytic/recycling pathway. The third population which contained larger amounts of gamma adaptin and do not carry transferrin could be involved in the biosynthetic pathway. The vesicle lipid pattern and the saturation of their fatty acyl chains were analyzed and confirmed these results. The nature of the interactions between vesicle components was then determined using several classes of detergents. Only non ionic ones could solubilize the LDL-R in a complex with either alpha or gamma adaptin. In contrast, they dissociated clathrin or beta-beta' adaptins. Taken together these results prompt us to suggest an integrated model for targeting in membrane traffic. Besides specific targeting signals carried by cargo proteins and recognized by proteins from the coat and the cytosolic trafficking machinery, lipids would play a key modulatory role. At each step in the membrane traffic, the proteins which carry multiple targeting signals would interact transiently with a specific set of lipids. This would result in the exposure of the appropriate targeting signals which could now become recognized by the proper targeting machinery.  相似文献   

6.
We prepared large unilamellar vesicles (LUVs) with three different stratum corneum lipid compositions: constant amounts of ceramides (55 wt %) and fatty acids (15%) with varying amounts of cholesterol sulfate (0-15%) and cholesterol (15-30%). One of the compositions served as a model for normal stratum corneum, while the second one served as a model for recessive X-linked ichthyosis stratum corneum. The third composition consisted of no cholesterol sulfate. Intervesicle lipid interactions in these LUVs were monitored by fluorescence methods for content leakage, and contents mixing at pH 9, in the absence and presence of Ca2+, and at pH 6. Since the content leakage and contents mixing assays were originally developed for phospholipid vesicles, we characterized the probe binding and the probe quenching properties for stratum corneum LUV systems, and modified the assays slightly accordingly. The time-dependent fluorescence intensity changes in the probe-containing LUVs at pH 9 and 6 and in response to the addition of calcium were monitored. Our results demonstrated that all three types of LUVs were relatively stable at pH 9. Addition of Ca2+ or decreasing the pH to 6 activated intervesicle lipid mixing followed by vesicle fusion and lysis. We found that the LUVs with no cholesterol sulfate and 30% cholesterol exhibited a more extensive Ca2+- or low-pH-activated intervesicle lipid interaction than LUVs with either 5% cholesterol sulfate and 25% cholesterol or 15% cholesterol sulfate and 15% cholesterol. These results suggest that fusogenic agents such as Ca2+ and H+ act to neutralize the fatty acids in the lipid bilayer of stratum corneum vesicles. The inclusion of 5-15% cholesterol sulfate helps to prevent the collapse of fused vesicles into other structures.  相似文献   

7.
Studies of asymmetric membrane assembly   总被引:1,自引:0,他引:1  
The major capsid protein of M13 bacteriophage is incorporated at each stage of infection into the host plasma membrane with its amino terminus exposed on the outer surface. Purified M13 coat protein is incorporated with the same asymmetry into synthetic phosphatidylcholine vesicles formed near the Tm of the lipid by a cholate dilution technique. We now report that the lipid in the pre-dilution mixture exists as mixed micelles of uniform size. Prior to dilution, the coat protein is present in at least two states of aggregation, both of which behave similarly in the model membrane assembly reaction. No detectable lipid-protein interaction occurs prior to dilution. Upon dilution there is rapid production of small closed vesicles and coat protein is converted to a chymotrypsin-resistant form, presumably reflecting its incorporation into these vesicle bilayers. Formation of large (greater than 6000 A diameter) vesicles occurs slowly with preservation of coat protein asymmetry and internal volume. A model for this assembly reaction is proposed.  相似文献   

8.
The fluorescence deplorarization associated with the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene is used to monitor changes in fluidity accompanying the gel-liquid crystalline phase transition in phosphatidylcholine dispersions. In this way, the parameters of the phase transition are determined for both large, multilamellar liposomes and small, single-lamellar vesicles composed of three mixtures of phosphatidycholines: dimyristoyl-dipalmitoyl, dimyristoyl-distearoyl, and dioleyl-dipalmitoyl. Phase diagrams for these mixed-lipid vesicles are constructed by plotting the delimiting temperatures of the phase transition vs. the lipid compostion of the vesicle. The phase diagrams are interpreted to suggest that the miscibilities of the lipids studied are markedly different in small, single-lamellar vesicles and large multilamellar liposomes. These results are discussed in terms of the effects of high curvature on the structure of biological membranes.  相似文献   

9.
The effect of a variety of gangliosides has been tested on the phospholipase C-induced fusion of large unilamellar vesicles. Bilayer composition was phosphatidylcholine:phosphatidylethanolamine: cholesterol (2:1:1 mole ratio) plus the appropriate amounts of glycosphingolipids. Enzyme phosphohydrolase activity, vesicle aggregation, mixing of bilayer lipids and mixing of liposomal aqueous contents were separately assayed. Small amounts ( < 1 mol %) of gangliosides in the lipid bilayer produce a significant inhibition of the above processes. The inhibitory effect of gangliosides increases with the size of the oligosaccharide chain in the polar head group. Inhibition depends in a nonlinear manner on the ganglioside proportion, and is complete at approximately 5 mol %. Inhibition is not due to ganglioside-dependent changes in vesicle curvature or size. Ganglioside inhibition of vesicle fusion is due to two different effects: inhibition of phospholipase C activity and stabilization of the lipid lamellar phase. Enzyme inhibition leads to a parallel decrease of vesicle aggregation and lipid mixing rates. Mixing of aqueous contents, though, is depressed beyond the enzyme inhibition levels. This is explained in terms of the fusion pore requiring a local destabilization of the lipid bilayer, the lamellar structure being stabilized by gangliosides. 31P-NMR and DSC experiments confirm the inhibitory effect of gangliosides in various lamellar-to-nonlamellar transitions.  相似文献   

10.
The mechanism for the formation of biomimetic model cell membranes consisting of bilayers composed of alkanethiols and phospholipids was probed with a kinetic study using surface plasmon resonance. The kinetics of formation of a monolayer of phospholipid from vesicles in solution onto a hydrophobic alkanethiol monolayer is described by a model that takes into account the lipid concentration, diffusion, and a surface reorganization rate constant. Monomer phospholipid apparently does not play a direct role in determining the kinetics of bilayer formation. Expressions for the limiting cases of this model describe the behavior of two distinct vesicle concentration conditions. At high concentrations of lipid vesicles the formation of the bilayer appears to be limited by the diffusion of vesicles to the surface; at lower concentrations of vesicles, the rate-limiting step is apparently the surface reorganization of lipid. This kinetic model can also be used to describe the formation of a biomimetic bilayer from an alkanethiol monolayer and cell membranes.  相似文献   

11.
In polarized cells intracellular sorting of plasma membrane proteins occurs to a large extent at the trans-Golgi network, giving rise to vesicles destined for distinct plasma membrane domains. This review discusses the several pathways, both direct and indirect, which lead to protein incorporation into the correct cell surface, as well as the mechanisms involved. Proteins contain signals which direct their incorporation into the distinct vesicles destined for plasma membrane microdomains. Specific coat proteins are involved in vesicle assembly and are likely to play a role in the generation of discrete vesicle populations. Molecules involved in vesicle docking and fusion may also add specificity to the targeting process.  相似文献   

12.
Very strong medium effects have been observed when testing the antioxidant activity of dipyridamole (DP) in different media such as benzene, tert-butanol, methanol solutions and egg yolk lecithin unilamellar and multilamellar vesicles. Actually, dipyridamole behaves as a very poor antioxidant in benzene while its ability to inhibit the lipid peroxidation reaction increases with increasing solvent polarity, being the highest in lipid vesicles. This behavior can not be rationalized on the basis of the classical chain breaking mechanism which operates in the case of phenolic and amine antioxidants and involving the transfer of a hydrogen atom to peroxyl radicals. An explanation is instead given in terms of an electron transfer reaction which leads to the oxidation of DP by the chain carrying peroxyl radical to give the dipyridamole cation radical, DP+*, and the peroxyl anion LOO-, and whose rate constant is expected to increase in strongly polar media. EPR and electrochemical data supporting this interpretation have been collected.  相似文献   

13.
The partition of free fatty acids (FFA) to egg-phosphatidylcholine (egg-PC) and egg-phosphatidylethanolamine (egg-PE) vesicles was studied. Upon the addition of FFA to the suspension of vesicles, the pH of the aqueous phase changed depending on the length and saturation of the FFA hydrocarbon chain, as well as on the vesicle composition. The medium pH decreased faster if FFA was added to egg-PE as compared to egg-PC vesicles. The fluorescent free fatty acid indicator (ADIFAB) was used to measure the amount of FFA remaining in the aqueous phase. Most of the FFA added to the suspension of egg-PE vesicles remained in the aqueous phase, whereas in the presence of egg-PC vesicles the FFA partitioned preferentially into the lipid phase. The amount of FFA incorporated into the lipid bilayers was estimated by measuring the changes of pH at the lipid bilayer surface, using fluorescein-PE. At high surface concentrations of FFA, decreasing pH at the bilayer surface caused the protonation of FFA, and raised the pK of FFA at the bilayer surface from 5 to about 7. The partition of FFA in egg-PE vesicles was an order of magnitude lower than that in egg-PC vesicles. The incorporation amount was determined more by the molecular packing than by the nature of lipid headgroups, because steroylcaprioyl-PE, which preferred the bilayer structure, behaved more like egg-PC than egg-PE. Understanding FFA partition characteristics would help to interpret the hydrolysis measurements of phospholipids, and to explain many biological activities of FFA.  相似文献   

14.
The action of phospholipase A2 (PLA2) on bilayer substrates causes the accumulation of reaction products, lyso-phospholipid and fatty acid. These reaction products and the phospholipid substrate generate compositional heterogeneities and then apparently phase separate when a critical mole fraction of reaction product accumulates in the membrane. This putative phase separation drives an abrupt morphologic rearrangement of the vesicle, which may be in turn responsible for modulating the activity of PLA2. Here we examine the thermotropic properties of the phase-separated lipid system formed upon hydrating colyophilized reaction products (1:1 palmitic acid:1-palmitoyl-2-lyso-phosphatidylcholine) and substrate, dipalmitoylphosphatidylcholine. The mixture forms structures which are not canonical spherical vesicles and appear to be disks in the gel-state. The main gel-liquid transition of these structures is hysteretic. This hysteresis is apparent using several techniques, each selected for its sensitivity to different aspects of a lipid aggregate's structure. The thermotropic hysteresis reflects the coupling between phase separation and changes in vesicle morphology.  相似文献   

15.
Na+,K(+)-ATPase was reconstituted in vesicles prepared by a dialysis method. Ion-exchange chromatography was used to obtain well characterized fractions from the inhomogeneous vesicle preparation. Lipid and protein content was determined by optical methods during the elution process. It was possible to separate fractions with distinct enzymatic and transport activities. A protocol was set up, which allowed to calculate the average number of 5-IAF labeled ion pumps per vesicle in the different fractions. The dependence of the number of protein molecules per vesicle was studied as function of the initial protein concentration added to the lipid solution before dialysis. The transport activity disappears completely at very low protein concentrations (3.3 micrograms protein per mg lipid). This observation is in favor of the proposal discussed in the literature, that the heterodimer (alpha beta)2 is the transport-active form of the Na+,K(+)-ATPase. The presented method can be applied to all reconstituted vesicle preparations in which the proteins can be labeled quantitatively with a fluorescence dye.  相似文献   

16.
The application of cationic liposome reagents has advanced DNA and mRNA transfection research in vitro, and data are accumulating which show their utility for in vivo gene transfer. However, chemical structure-activity data leading to a better mechanistic understanding of their biological activity is still limited. Most of the cationic lipid reagents in use today for this application are formulated as liposomes containing two lipid species, a cationic amphiphile and a neutral phospholipid, typically dioleoylphosphatidylethanolamine (DOPE). The studies reported here examine the effects of some systematic chemical structural changes in both of these lipid components. Cationic and neutral phospholipids were formulated together as large multilamellar vesicles (MLV) or small sonicated unilamellar vesicles (SUV) in water, and each formulation was assayed quantitatively in 96-well microtiter plates under 64 different assay conditions using COS.7 cells and an RSV-beta-galactosidase expression plasmid. The cationic lipid molecules used for these studies were derived from a novel series of 2,3-dialkyloxypropyl quaternary ammonium compounds containing a hydroxyalkyl moiety on the quaternary amine. A homologous series of dioleylalkyl (C18:1) compounds containing increasing hydroxyalkyl chain lengths on the quaternary amine were synthesized, formulated with 50 mol % DOPE, and assayed for transfection activity. The order of efficacy was ethyl > propyl > butyl > pentyl > 2,3-dioleyloxypropyl-1-trimethyl ammonium bromide (DOTMA). DOTMA, which is commercially available under the trademark Lipofectin Reagent, lacks a hydroxyalkyl moiety on the quaternary amine. A homologous series of hydroxyethyl quaternary ammonium derivatives with different alkyl chain substitutions were synthesized, formulated with 50 mol % DOPE, and assayed in the transfection assay. The order of transfection efficacy was dimyristyl (di-C14:0) > dioleyl (di-C18:1) > dipalmityl (di-C16:0) > disteryl (di-C18:0). The addition of 100 microM chloroquine in the transfection experiment enhanced the activity of the dioleyl compound by 4-fold and decreased the activity of the dimyristyl compound by 70%. For each of the compounds and formulations examined in this report, large multilamellar vesicles (MLV; diameter 300-700 nm) were more active than small unilamellar vesicles (SUV; diameter 50-100 nm). The neutral phospholipid requirements for transfection activity in COS.7 cells with these cationic lipid molecules were examined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
To analyze whether specific protein-lipid interactions or physical features of the membrane contribute to cytochrome P450SCC (CYP11A1) activation by lipids, dimyristoylphosphatidylcholine/cardiolipin and dimyristoylphosphatidylcholine/branched phosphatidylcholine vesicles of defined acyl chain structure were studied for their ability to stimulate the side chain cleavage activity of the enzyme. Activation was found to increase with the mole percent of nonbilayer lipids in the system and the chain lengths of both the branched and main fatty acyl chains of the activator lipid. Unsaturation provided by dioleoylphosphatidylcholine as host lipid leads to a further increase in the potency of the branched phosphatidylcholines to activate the enzyme. The observed activation can be qualitatively interpreted in terms of the effect of these lipids on the hydrophobic volume of the membrane. Using differential scanning calorimetry, we showed that the branched phosphatidylcholines perturb the bilayer membrane structure of dimyristoylphosphatidylcholine and lower the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine, i.e., promote hexagonal phase formation. We also examined the effect of eicosane on both the cytochrome P450SCC activity and the lipid polymorphism and found that eicosane increases both the activity and the hexagonal phase propensity of the vesicle membrane. Because of these correlations, we conclude that the nonbilayer phase propensity of the membrane rather than specific binding of activator lipids to the enzyme explains best the observed activation of enzymatic activity by the lipids.  相似文献   

18.
A novel method has been developed for the study of phospholipid exchange and fusion of phospholipid vesicles. Two homogeneous populations of single bilayer phosphatidylcholine vesicles of similar size but markedly different density have been prepared. "Dense" vesicles were made from brominated dioleoyl phosphatidylcholine. "Light" vesicles were prepared from dioleoyl phosphatidylcholine. The two populations were easily separated by density gradient centrifugation. Phosphatidylcholine exchange protein from beef liver was used to promote lecithin exchange between the vesicle populations. Only the lecithin of the external monolayers of the vesicles was available for exchange by exchange protein, implying that flip-flop of vesicle phosphatidylcholine did not take place at a detectable frequency. No spontaneous intervesicle phosphatidylcholine exchange was observed. However, the dense and light vesicles did spontaneously fuse, over several hours, to produce particles of hybrid density.  相似文献   

19.
The production of vesicles, spherical shells formed from lipid bilayers, is an important aspect of their recent application to drug delivery technologies. One popular production method involves pushing a lipid suspension through cylindrical pores in polycarbonate membranes. However, the actual mechanism by which the polydisperse, multilamellar lipid suspension breaks up into a relatively monodisperse population of vesicles is not well understood. To learn about factors influencing this process, we have characterized vesicles produced under different extrusion parameters and from different lipids. We find that extruded vesicles are only produced above a certain threshold extrusion pressure and have sizes that depend on the extrusion pressure. The minimum pressure appears to be associated with the lysis tension of the lipid bilayer rather than any bending modulus of the system. The flow rate of equal concentration lipid solutions through the pores, after being corrected for the viscosity of water, is independent of lipid properties.  相似文献   

20.
The interaction of the wheat antibacterial peptide alpha-thionin with large unilamellar vesicles has been investigated by means of fluorescence spectroscopy. Binding of the peptide to the vesicles is followed by the release of vesicle contents, vesicle aggregation, and lipid mixing. Vesicle fusion, i.e., mixing of the aqueous contents, was not observed. Peptide binding is governed by electrostatic interactions and shows no cooperativity. The amphipatic nature of wheat alpha-thionin seems to destabilize the membrane bilayer and trigger the aggregation of the vesicles and lipid mixing. The presence of distearoylphosphatidylethanolamine-poly(ethylene glycol 2000) (PEG-PE) within the membrane provides a steric barrier that inhibits vesicle aggregation and lipid mixing but does not prevent leakage. Vesicle leakage through discrete membrane channels is unlikely, because the release of encapsulated large fluorescent dextrans is very similar to that of 8-aminonaphthalene-1,3,6,trisulfonic acid (ANTS). A minimum number of 700 peptide molecules must bind to each vesicle to produce complete leakage, which suggests a mechanism in which the overall destabilization of the membrane is due to the formation of transient pores rather than discrete channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号