首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
质子交换膜(PEM)燃料电池操作参数的优化是提高其性能和稳定性的重要手段.介绍了燃料电池测试系统的主要功能和使用方法,并运用此系统试对PEM燃料电池动态特性进行了测试.分析了操作参数对PEM燃料电池性能的影响.研究结果发现仅加湿空气或氢气,电池电流密度低,为了获得良好的电池性能,空气和氢气必须同时加湿;电池的加热温度过高或过低,PEM燃料电池的电流密度都很低;加湿温度过低时的电池电流密度比加湿温度过高时的电池电流密度更低;电池温度343 K和加湿温度333 K时,燃料电池的电流密度最大;加大反应气体空气的流量,燃料电池的电流密度一直增大;而增大氢气流量时,电池的电流密度先增大,而后趋于平稳.实验结果对于促进PEM燃料电池的商业化具有重要意义.  相似文献   

2.
目的研究电池温度、加湿温度、气体流量对氢-空交指流场PEM电池性能的影响,优化操作参数,提高PEM燃料电池的性能和稳定性,降低成本,促进其实用化.方法运用燃料电池测试系统测量了PEM燃料电池的性能,分析了电池温度、加湿温度和气体流量对其性能的影响.结果单有氢气或空气加湿,质子交换膜不能充分湿润,燃料电池性能较低;当电池温度和加湿温度同时等于343 K时,电池性能最佳;实验条件下,空气流量为260 ml.cm-3时,最佳氢气流量为70 ml.cm-3.结论实验结果对PEM燃料电池的参数优化具有重要的参考作用,为其推广应用提供实践依据.  相似文献   

3.
燃料电池发动机系统计算分析   总被引:5,自引:0,他引:5  
根据质子交换膜燃料电池工作原理 ,对车载燃料电池系统进行了较详细的计算与分析。通过计算发现 ,2 5 k W燃料电池车载系统在单电池电压为 0 .5 5 V的情况下 ,氢气的消耗量 (标准气体状态下 )为 19.0 4 m3/ h;空气的消耗量 (标准气体状态下 )为 4 5 .33m3/ h。散热系统的热量主要来源于电堆工作时的化学反应热、焦耳热、加湿气体带入的热量及吸收环境的辐射热 ,其中主要为化学反应热和焦耳热 ,其值大致与电堆功率相当。电堆的散热主要包括尾气带走的热量、辐射热和循环水传递的热量。计算发现 ,2 5 k W电堆尾气带走的热量约为 4 83W,辐射热为 16 6 .7W,均可忽略不计 ,电堆产生的热量可认为主要由循环冷却水带走。在保持电堆进、出口循环水温差为 10℃时 ,2 5 k W电堆所需循环冷却水约为3m3/ h。  相似文献   

4.
燃料电池汽车被认为是应对环保和石油危机的有效技术方案之一.研究了燃料电池氢气供应系统,建立了氢气供应系统的数学模型.在此模型基础上应用自适应预测控制理论对氢气供应系统进行控制,建立了预测模型,并进行了仿真.仿真结果表明:与反馈控制相比,自适应预测控制误差小,精度高,能较好地消除压力波动,有利于延长燃料电池中电解质膜的寿命.  相似文献   

5.
使用计算流体动力学(CFD)方法,建立了三维直流道质子交换膜燃料电池的阳极和阴极模型。使用500W质子交换膜燃料电池电堆验证了电池的输出特性,分析了反应气体压力、电堆温度和气体增湿温度对电池输出电压的影响。根据内部流场的仿真结果,考察了反应气体压力、温度等操作条件因素对反应物和电流密度分布的影响,为提高车用质子交换膜燃料电池性能及工作的稳定性提供参考。  相似文献   

6.
燃料电池堆单片电池的工作状态直接影响到整个电池堆的性能,需要对单片电压进行实时监控。以应用于某一微型燃料电池汽车的5 kW燃料电池堆系统为例,介绍了基于单片机MC9S12DP256B的质子交换膜燃料电池(PEMFC)单片电压巡检系统(SCVM)的结构、工作原理、软件设计以及在燃料电池堆系统控制中的应用。通过CAN总线技术,单片电压巡检系统实现了与燃料电池堆控制单元(FCU)的通讯,可以有效地将各单片电压的状态传递至FCU,使之在电堆出现异常状况下及时采取相关处理措施,降低燃料电池堆的损伤,延长使用寿命。还提出了拓展和完善该系统的设想。  相似文献   

7.
质子交换膜燃料电池性能衰退与寿命预测研究需要依靠多物理仿真模型。为了满足燃料电池堆对仿真工具的要求,单电池模型被串联起来建立了一个燃料电池堆二维模型。在每个单电池内,考虑了各个组件的气体成分,带电离子和水分子的耦合传输特性。以10个单电池组成的电堆为例,将电池堆性能的影响因素归结为内部性能参数和操作运行过程中的控制参数。得到了燃料电池堆的气体浓度分布、阴阳极湿度分布、局部电流密度分布和整体温度分布等。最后对电池内部性能参数和操作参数进行分析,发现提高催化层活性比表面积可改善活化损失;提高质子交换膜电导率可改善欧姆损失;提高扩散层孔隙率可改善浓差损失。为PEMFC性能优化设计和操作条件的选择打下基础。  相似文献   

8.
质子交换膜燃料电池将氢气分解成氢离子和电子,通过外电路产生电流.流道结构将影响氢气和氧气在燃料电池内的流动状态和分布区域,并最终影响输出电流的大小.针对单流道、平行流道、单蛇形流道和复合蛇形流道的燃料电池进行了模拟计算,分析了气体在流道内的扩散过程和电池输出电压的变化情况,对比了不同流道中氢气、氧气和生成的水的分布情况,以及氢气和氧气的输入速率对输出电流密度和材料利用率的影响,获得了优化的流道结构和工作参数,提高了燃料电池的工作性能.  相似文献   

9.
对质子交换膜燃料电池(PEMFC)建立合适的数学模型,有助于改善PEMFC的设计。结合燃料电池的电场与温度场,建立了包含质子交换膜燃料电池的电化学模型与温度模型的数学模型,通过MATLAB软件进行仿真,仿真结果表明该模型较好地反映出PEMFC系统的动态特性,并研究了工作温度、反应气体工作压力以及质子交换膜面积变化对电池输出性能的影响。与此同时结合所建立的质子交换膜燃料电池模型设计了一款采用PID控制的Boost升压电路,将燃料电池输出不稳定的电压转变成可供给负载稳定使用的24V电压。  相似文献   

10.
燃料电池汽车被认为是应对环保和石油危机的有效技术方案之一。研究了燃料电池氢气供应系统,建立了氢气供应系统的数学模型。在此模型基础上应用自适应预测控制理论对氢气供应系统进行控制,建立了预测模型,并进行了仿真。仿真结果表明:与反馈控制相比,自适应预测控制误差小,精度高,能较好地消除压力波动,有利于延长燃料电池中电解质膜的寿命。  相似文献   

11.
建立了一个二维稳态两相等温的质子交换膜燃料电池模型用于研究相对湿度对电池水传输的影响。模型综合考虑了电池中的动量守恒、质量传输、电荷守恒、催化层中的电化学反应,以及扩散层中液态水的凝结。通过计算分析电池内部的水分布和水传输表明:燃料电池的进气均需要加湿,以保证电解质膜的湿润,使其具有很好的导电能力;阴极进气加湿在75%左右电池性能可以达到最佳;阳极进气干燥对电池的性能影响较大。  相似文献   

12.
为研究流场结构设计对电池内的流动、组分传递和电池性能等的影响,建立了一个稳态的三维非等温质子交换膜燃料电池数学模型,应用此模型对一个交指状流场设计的电池单体(电极面积为64 cm ×65 cm)进行了数值研究.数值计算得到了电池的温度、组分质量浓度和局部电流密度等的空间分布,分析了不同电池反应物湿度等对电池特性的影响.结果表明,受传质的影响,沟道下方阴极催化层的温度大于相应沟脊下方的区域;与饱和气流进气的基本工况相比,降低阴极的进气湿度能提高电池的性能,而降低阳极的进气湿度则会导致电池性能的下降.  相似文献   

13.
质子交换膜燃料电池加湿器的建模与仿真   总被引:2,自引:0,他引:2  
为了深入研究质子交换膜燃料电池加湿器的工作性能,从传热传质学的角度分析膜加湿器系统,建立加湿器的机理模型。当已知加湿器入口气体和水流的状态参数(如:温度、流量、压力)以及加湿器的物理参数(如:气道的几何形状和热传导系数等)时,此模型可以计算出加湿器出口气体的相对湿度、温度以及出口水温等变量值。以1 kW质子交换膜燃料电池的参数为依据,用Simulink进行仿真。仿真结果与实验数据的比较表明,模型能够反映出加湿器的实际工作状况。  相似文献   

14.
对固体氧化物燃料电池(SOFC)热电联供系统(CHP)进行了研究,建立了各个组件的数学模型,并应用Matlab软件实现了系统的计算机模拟。以发电规模为20 kW的系统为研究对象,对其设计工况和运行工况进行了性能模拟,模拟结果表明,在设计点工况,系统的联供效率可达89%,系统中空气侧压缩机的功率消耗最大;在运行工况下,减小燃料利用率或增加过量空气比率均使系统的热、电效率下降,两参数对系统热效率的影响程度相当且较为显著,而燃料利用对发电效率的影响更为敏感,若需获得较高的发电效率,建议系统采取高燃料利用率的操作策略,若需获得较高的热效率,建议采取高燃料利用率或者在电堆允许的温差应力下降低过量空气比率的操作策略。整个研究工作为固体氧化物燃料电池热电联供系统的设计和操作提供了指导。  相似文献   

15.
提出和建立了包含水平衡的氢燃料电池堆的动态模型,用于研究质子交换膜(PEM)燃料电池堆的静、动态性能。基于此模型,针对不同的运行条件进行了准实体规模的仿真研究。相应的仿真静、动态性能与实测的燃料电池堆数据比较,显示了很好的一致性。  相似文献   

16.
本研究考虑2种情境提升原有都市水资源回收中心为绿色加气站,设置"绿色加气站"(含"甲烷供应系统"及"绿色氢供应系统")与"绿色加电站".故变更本水资源处理流程,分2种构想.构想1,将园区周边高浓度有机废水做为本处理厂水来源之一,或采用高低浓度废水分流收集方式,废水处理系统则采用两相式厌氧处理系统,以废水及污泥产制氢气及甲烷气成为气态生质能源.构想2,于现有规划设计增设新型有机污泥处理设施,包含高温好氧消化系统及甲烷化系统,可以直接生产甲烷气.另外,可于场址顶部设计太阳能丛林,产生之电力直接供应园区用电,或将处理出流水电解产生氢气燃料.本研究以污水处理量18 000CMD计算可产生之气体燃料,并换算至现有压缩天然气(CNG)公交车、电动车以及氢能汽车所需气体燃料量进行效益分析,若废水处理流程更改为构想1,每日所产生之氢气可供应250部氢能车使用,同时产生的甲烷气体可供应50部CNG公交车使用,若氢气透过燃料电池发电可供应378车次的电动车充电,但此方案必须导入园区周边的高浓度有机废水,将废水COD浓度提高至5g/L才能有效实行.构想2,在不更动现有的水资源回收处理程序设计下,仅在程序中增加有机污泥能源化系统,每日产制出的甲烷气体可供应20部CNG公交车使用,并降低系统污泥产生量达80%,不仅可达到能源回收的目的亦可降低污泥处置成本.最后若于水资源处理中心建物顶端设置太阳能板丛林,所产生的电力可供应园区使用,或可提供电动车加电站使用,每日可补充22车次的电动车.透过设置放流水电解系统,每日可供应7部氢能车使用;设置太阳能发电及电解系统,不仅可提升水回收比例,更具有展示及美化功能.  相似文献   

17.
Tongsh  Chasen  Liang  YiQi  Xie  Xu  Li  LinCai  Liu  Zhi  Du  Qing  Jiao  Kui 《中国科学:技术科学(英文版)》2021,64(10):2153-2165

The flow field is a pivotal part to manage the transport of water and gas in proton exchange membrane fuel cell. However, the reported water measurement methods (e.g., X-ray and electrochemical impedance spectroscopy (EIS)) cannot give a comprehensive understanding water distribution in the flow field, resulting in challenges in optimizing the channel design and enhancing fuel cell performance. Therefore, we propose a water measurement method combining the X-ray radiography with EIS to investigate the effect of different operating conditions on the growth law and distribution of liquid water in parallel and serpentine flow fields. The attenuation coefficient of liquid water to X-ray is calibrated with constant tube-current and tube-voltage of X-ray generator. Besides, the parallel flow field with hydrophobic treatment is studied. The results show that the water accumulation of the parallel flow field is far more than the serpentine flow field, and the water content of the middle region is higher than that of other regions in the parallel flow field. Furthermore, operating conditions (cathode inlet gas flow rate, inlet gas humidity, and back pressure) have little effect on the liquid water content of the middle region in the parallel flow field. The polarization curve, EIS result, and X-ray radiography show that the performance and water drainage capacity of the hydrophobic parallel flow field are better than the normal one.

  相似文献   

18.
The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.  相似文献   

19.
为提高固体燃料电池(solid oxide fuel cell, SOFC)的能源综合利用效率,提出一种基于SOFC循环、燃气轮机和吸收式制冷机的功冷联供系统。建立联供系统的热力学模型,给出设计工况下的热力学参数,对联供系统进行模拟分析。结果表明,在设计工况下,燃料电池发电效率、联供系统总发电效率和功冷联供效率分别为46.81%、54.53%和72.24%。燃料电池进口温度为620 ℃时,联供系统取得最大总发电效率和功冷联供效率,分别为54.66%和72.42%;在燃料电池进口温度为600 ℃时,联供系统输出制冷量最多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号