首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为提高电动轮汽车的续驶里程,综合考虑轮毂电机输出特性、电池SOC及制动强度对再生制动系统的影响,提出一种模糊逻辑控制的再生制动控制策略.在根据制动强度对理想制动力曲线、ECE法规线进行计算,合理分配前、后轮电机制动力和制动器制动力的基础上,将由MATLAB/Simulink搭建的模糊逻辑控制的制动力分配模型嵌入到ADVISOR搭建的整车模型中,并在CYC_UDDS工况下,与ADVISOR自带查表法控制策略进行仿真对比.结果 表明,所提的模糊逻辑控制策略相对查表法控制策略使电动轮汽车的行驶时间增加了12.2%,滞后38s出现速度差,且速度差明显减小.  相似文献   

2.
赵玲  唐岚  吴晓花 《机械》2014,(4):18-21
为提高纯电动汽车的再生制动能量回收率,在分析基于理想制动力曲线和基于ECE法规的电动汽车前后轮制动力分配控制策略的基础上,根据制动强度和储能元件荷电状态的大小,提出了一种基于模糊逻辑的前后轮制动力分配控制策略,以实现制动能量的高效回收利用和良好的汽车制动稳定性。对该控制策略在电动汽车仿真软件ADVISOR2002下进行了仿真,仿真结果表明,该制动力分配控制策略提高了再生制动能量的回收率,同时也能改善汽车的制动稳定性。  相似文献   

3.
汽车ABS是改善汽车主动安全性的重要装置。通过调节制动力,使汽车获得良好的制动效能并保持罗高方向操纵稳定性,车轮滑移率是制动力调节的主要依据,车速是其不可缺少的参数,本文提出一种利用对加速传感器测得的加速度积分获得制动过程车速的方法,并经试验证实其可行性。  相似文献   

4.
针对电动汽车在低附着路面的驾驶稳定性的问题进行研究。因为汽车在冰雪路面制动时,大多数制动力分配方案以再生制动为主要制动力,此时很有可能发生抱死,从而发生汽车驾驶稳定性下降。本文中提出了一种在制动力分配上加入滑移率的控制方法,该方法以纯电动汽车为模型,设计出以汽车滑移率为控制对象的滑膜控制器。该控制方法在改进再生制动力分配策略上,特别在小制动强度时,电动汽车驱动轴有趋于抱死的情况立即减少再生制动力,使电动汽车恢复原有的稳定性。仿真结果表明:在强度恒定的制动工况下,电动汽车模型具有良好的驾驶稳定性,电动汽车模型在需要频繁制动的城市路况下,能量回收率提升了4.1%。  相似文献   

5.
基于AMT的轻度混合动力系统再生制动控制   总被引:4,自引:0,他引:4  
分析制动强度、ISG电动机制动力、发动机制动力以及电池充电功率的相互关系,得到电动机实际制动力随期望制动强度和车速变化曲面。提出基于电动机实际制动力的前后轮制动力分配策略。在此基础上考虑变速器挡位对传动系统工作点的影响,提出制动过程中能量最大化回收的换挡控制策略。台架试验结果表明,采用所提出的再生制动控制策略比传统控制策略能更有效地回收制动能量。  相似文献   

6.
制动力分配算法是电动汽车再生制动研究的基础,为了能够在不同路面制动时均能获得较好的制动效果,设计了 一种考虑路面附着条件影响的电动汽车制动力变比值优化分配算法.利用汽车动力学方程进行滑移率和利用附着系数估算,实现对路面类型的辨识.然后根据辨识的路面类型选择对应的制动力变比值分配系数,进行算法实现.最后通过与dSPACE软件联合仿真验证了算法有效性,与未考虑路面附着条件的算法相比,新算法制动所需时间至少减少了 6.6%.  相似文献   

7.
关于汽车液压制动系统的线图模型研究   总被引:1,自引:0,他引:1  
讨论了线图的基本原理和算法并提出了汽车液压制动系统的线图模型,论证了线图模型的求解全过程并得到系统的状态方程。根据得到的状态方程,对汽车制动过程中制动力矩随时间、制动力、踏板角速度的变化情况进行了分析。结果显示,这种线图模型简单,能直观的反应制动力矩随其影响因素的变化情况,适宜于汽车制动时的动态分析。  相似文献   

8.
基于混联式混合动力汽车动力转向、制动、悬挂等系统对控制精度高、响应快速的要求,以某型混联式混合动力汽车为研究对象,采用AMESim与MATLAB软件对其动力转向系统、制动系统、悬挂系统电液复合控制进行仿真分析,对制动力进行试验验证.仿真结果表明:在电液复合控制下,混联式混合动力汽车动力转向系统中液压系统压力及转向力矩存在一定的波动;制动系统中的车速及制动力也存在一定的波动;悬挂系统中引入半主动控制电液复合控制效果更优;仿真制动力与试验制动力相对误差为2.23%,验证了仿真分析的正确性.该研究为混联式混合动力汽车电液复合控制系统设计与分析提供理论依据.  相似文献   

9.
在遵循制动力分配原则的基础上,提出了基于最佳制动效果和模糊控制的再生制动控制策略,使机械制动和再生制动可以很好地协同工作,实现前后轮制动力合理分配。设计了以制动强度和蓄电池荷电状态为输入变量,以期望再生制动力为输出变量的模糊控制器。利用仿真软件ADVISOR,对所设计的控制策略进行了部件性能、制动能量回收、制动感觉三方面仿真分析。同时,为验证ADVISOR仿真结果的有效性,搭建了硬件在环仿真实验平台。结果表明,所设计的控制策略在保证汽车制动稳定性的前提下,能够使驾驶员获得满意的制动感觉,同时有效提高了汽车能量利用率,最终达到了最佳制动效果。  相似文献   

10.
汽车制动力动态分配控制   总被引:1,自引:0,他引:1  
对汽车制动过程中的制动力分配进行控制 ,提出了转向角前馈控制原则 ,并进行了模拟分析 ,结果表明该方法对提高汽车转弯制动过程中的操纵性和稳定性是有效的。  相似文献   

11.
为提高电动汽车制动能量的回收,通过对电动汽车制动力学的和相关法规的分析,结合电机的输出特性,提出一种前、后轮制动力根据制动强度进行分配的控制策略,并在ADVISOR软件上进行了仿真分析,仿真结果表明,与ADVISOR制动力分配策略比较,在百公里能耗、制动能量回收及能量利用率上都有明显优势,同时也较好地满足了制动稳定性要求。  相似文献   

12.
电动汽车复合能源系统再生制动分段控制策略研究   总被引:1,自引:0,他引:1  
为了提高电动汽车复合能源系统的制动能量回收效率,对蓄电池,超级电容和双向DC/DC变换器相结合的复合能源系统和常规控制策略进行了研究,改进了复合能源系统,使其具有3种再生制动工作模式,并提出了再生制动分段控制策略。在高速段、中速段和低速段3个不同的阶段,采用了不同的再生制动控制方式,并根据超级电容电压、电机转速等因素确定了各阶段间切换时刻。通过电机制动电流和各阶段切换时刻优化控制,实现了平稳制动。以微型电动汽车为搭载对象,对常规控制策略和分段控制策略在两种不同初始制动车速下进行了制动工况的实测实验。实验结果表明,在分段控制策略作用下,微型电动汽车制动平稳,制动能量回收效率得到了提升。  相似文献   

13.
为解决液压混合动力工程车辆制动系统的能量控制问题,引进了制动系统转矩分配系数,基于模糊控制原理,以制动强度、再生蓄能器初始SOC、车速作为输入信息,以再生制动力与电液制动力的分配比例为输出信息,设计了液压混合动力车辆制动能量模糊控制策略。运用MATLAB/Simulink进行仿真,分析了该控制策略在制动模式下的再生制动转矩和电液制动转矩分配的实时变化情况,并与同条件下不用该控制策略进行了对比分析,证明了该控制策略在确保制动安全性的前提下可以高效的提高能量回收效率。  相似文献   

14.
液压混合动力装载机在制动及能量分配过程中,由于多个子系统的引入而导致的传统联合控制策略难以通过最优化来提高整车燃油经济性,针对这个问题,提出一种基于模糊控制的液压装载机多系统联合制动控制策略。该策略基于传感器检测信号对装载机进行作业、行驶工况识别,针对实际工况,基于粒子群算法进行模糊控制规则的最优化设计,利用识别的结果选择最优的模糊控制规则进行车辆联合制动及能量分配控制。仿真与实验结果表明:该控制策略能够充分利用制动回收能量,在保证车辆联合制动安全稳定的同时,提高了车辆的制动能量回收率。  相似文献   

15.
介绍了运枕龙门起重机控制系统的组成和工作模式。通过分析龙门起重机制动过程动力学模型提出了1种高性能的行走制动控制策略,具有制动距离短、防打滑、制动性能高等优点。  相似文献   

16.
迅速起效是重型车辆对液力缓速辅助制动系统的核心需求之一,但目前对液力缓速器工作腔内从气相到液相间瞬态制动起效过程的预测方法难以考虑充液阀系流动状态的影响,导致制动转矩起效时间的预测与测试存在较大偏差。为获取阀系对充液过程影响规律以准确预测制动起效时间,分别构建有无考虑充放液阀系流动的两种全流道液力缓速器计算模型,以全气相流场作为充液瞬态数值模拟初始条件,以流体进出充放液阀流速作为仿真边界条件,对比研究两种模型在制动过程中内流场参数分布特征,以及对应缓速制动转矩的瞬态变化趋势,并进行试验验证。结果表明,充液阀系对瞬态制动转矩起效具有明显的迟滞效应,未考虑阀系模型的瞬态制动特性计算结果与试验存在明显偏差,尤其对起效时间的预测过于理想化,而实测给定工况下最大时间迟滞可达4 s;考虑充放液阀系流动的液力-液压集成流动模型的预测精度较高,起效时间偏差不足0.8 s。利用所提出的预测方法能够为液力缓速器制动控制策略设计和整车制动系统设计提供理论依据。  相似文献   

17.
为了对履带车辆制动能量进行回收利用,根据某型履带车辆传动系统特点,建立了履带车辆液压储能式制动能量再生系统,分析了系统的工作原理,介绍了系统的工作模式。基于踏板行程逻辑门限值的模糊控制策略,分别建立了履带车辆制动工况和驱动工况控制策略,构建了两种工况下的控制系统Simulink模块。对履带车辆辅助制动和辅助驱动工况进行了仿真分析,得出车速、系统压力和燃油消耗率等参数的变化规律。设计并建立了系统模型实验台,对制动能量回收和再利用过程进行了原理性实验,计算了液压储能式制动能量再生系统总效率。通过比较仿真和实验结果,分析了影响系统总效率的因素,得出系统的实际可行性等结论。  相似文献   

18.
为了对履带车辆制动能量进行回收和再利用,根据某型履带车辆传动系统特点,建立了履带车辆液压储能式制动能量再生系统,分析了系统的工作原理,介绍了系统的工作模式。基于踏板行程逻辑门限值的模糊控制策略,分别建立了履带车辆制动工况和驱动工况控制策略,构建了两种工况下的控制系统Simulink模块。对履带车辆辅助制动和辅助驱动工况进行了仿真分析,得出车速、系统压力和燃油消耗率等参数的变化规律。设计并建立了系统模型实验台,对制动能量回收和再利用过程进行了原理性实验,计算了液压储能式制动能量再生系统总效率。通过比较仿真和实验结果,分析了影响系统总效率的因素,得出系统的实际可行性等结论。  相似文献   

19.
针对液压混合动力工程车辆工作过程中存在的燃油经济性较差和能量回收率低的问题,以装载机为原型,提出了一种基于模糊控制理论的车辆驱动与联合制动能量管理策略。根据车速、蓄能器SOC、泵/马达扭矩、制动扭矩等相关参数建立相应的模糊规则,制定车辆驱动控制策略和再生制动控制策略。搭建整车前向仿真模型对制定的控制策略进行仿真,然后进行硬件在环实验对仿真结果进行验证。结果表明,提出的控制策略合理有效,车辆的燃油消耗率有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号