首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The nutritional effect of vitamin E in dietsfor Litopenaeus vannamei postlarve (PL19)was investigated. Four formulated diets withdifferent combinations of -tocopherylacetate (-TA), ascorbic acid (AA) andhighly unsaturated fatty acids (HUFA) weretested, using four replicates.No significant differences in survival wereobserved among treatments after 34 days offeeding. However, shrimp fed with a dietcontaining 2% fish oil (low n-3 HUFA content),200 mg.kg–1 -TA and100 mg.kg–1 AA (diet H/E/C) showedsignificantly better growth than those fed adiet supplemented with 5% fish oil (high n-3HUFA content), 200 mg.kg–1 -TA and100 mg.kg–1 AA (diet H+/E/C). Shrimp fedwith a diet containing 5% fish oil,900 mg.kg–1 -TA and100 mg.kg–1 AA (diet H+/E+/C) showed a significantly higher tissue level of n-6 PUFAthan postlarvae fed diet H+/E/C. No definiteconclusion could be drawn about a possibleinteraction between -TA and AA, since acomparison of the diet containing 5% fish oil,200 mg.kg–1 -TA and700 mg.kg–1 AA (H+/E+/C+) and the dietH+/E/C did not show any significant differencesin any of the measured parameters. Theantioxidative status of the shrimp tissue(measured by means of the thiobarbituric acid(TBA) assay and expressed as nM malonaldehyde(MA) per gramme dry weight) was equal for alltreatments. Nevertheless, there was a slightlylower MA value with the diet H+/E/C+,indicating that AA may be an effectiveantioxidant in the aqueous phase and at thewater/lipid interface of the tissue. The tissuelevels of -T and AA were highlydependent on the amounts in diets and nocorrelation between -T and AAincorporation could be observed.  相似文献   

2.
A feeding experiment was conducted to investigate the effects of high dietary intake of vitamin E (supplied as dl ‐α‐tocopheryl acetate) and n‐3 highly unsaturated fatty acid (n‐3 HUFA) on the non‐specific immune response and disease resistance in Japanese flounder Paralichthys olivaceus. Nine practical diets were formulated to contain one of three levels of vitamin E namely, 0, 80 or 200 mg kg?1 (the total α‐tocopherol contents in the diets were 21, 97 and 213 mg kg?1 based on analysis), and at each vitamin E level with one of three n‐3 HUFA levels i.e. 0.5%, 1.5% or 2.0%. Each diet was randomly assigned to triplicate groups of Japanese flounder (initial body weight: 40.5±1.0 g, mean±SD) in a re‐circulation rearing system. Fish were fed twice daily to apparent satiation at 07:00 and 18:00 hours for 12 weeks. During the experimental period, water temperature was maintained at 18±1°C, salinity 31–35 g L?1, and pH 7.8–8.2. Dissolved oxygen was not less than 6 mg L?1, and there were negligible levels of free ammonia and nitrite. The results showed that the increase in dietary n‐3 HUFA from 0.5% to 1.0% significantly decreased muscle α‐tocopherol contents in fish‐fed diets with 21 and 97 mg α‐tocopherol kg?1 diet (P<0.05). In 1.0% HUFA groups, alternative complement pathway activity (ACH50) of fish fed the diet containing the 213 mg α‐tocopherol kg?1 diet was significantly higher than noted for fish fed the diet containing 97 mg α‐tocopherol kg?1 diet (P<0.05). Fish fed the diet with 213 mg α‐tocopherol kg?1 and 2.0% n‐3 HUFA had the highest lysozyme activity (131.7 U mL?1) among all the dietary treatments. Fish fed the diets containing 97 and 213 mg α‐tocopherol kg?1 with 1.0% n‐3 HUFA had significantly higher respiratory burst activity than those fed the diets containing 21 mg α‐tocopherol kg?1 with 0.5 and 1.0% n‐3 HUFA (P<0.05). In the disease resistance experiment, high intake of dietary vitamin E with 213 mg α‐tocopherol kg?1 significantly decreased cumulative mortality and delayed the days to first mortality after a 7‐day Edwardsiella tarda challenge (P<0.05). In addition, under the experimental conditions, dietary vitamin E and n‐3 HUFA had a synergistic effect on the non‐specific immune responses and disease resistance in Japanese flounder (P<0.05).  相似文献   

3.
An 8‐week feeding trial was conducted to determine two vitamin C derivatives, l ‐ascorbyl‐2‐sulphate (C2S) and l ‐ascorbyl‐2‐polyphosphate (C2PP), to satisfy vitamin C requirement and to test their effects on the non‐specific humoral immune responses of juvenile grouper, Epinephelus malabaricus. C2S and C2PP were each supplemented at 20, 50, 80, 150, 250 and 400 mg kg?1 diet in the semi‐purified basal diet providing of 7, 16, 28, 55, 86, 142 mg ascorbic acid (AA) equivalent of C2S kg?1 diet and 4, 9, 15, 31, 49, 75 mg AA equivalent of C2PP kg?1 diet, respectively. Basal diet without AA supplemented was included as a control. Each diet was fed to triplicate groups of grouper (mean initial weight: 6.69 ± 0.07 g). Fish fed diets with ≥28 mg AA equivalent of C2S or ≥4 mg AA equivalent of C2PP kg?1 had significantly (P < 0.05) greater weight gain (WG) than fish fed the unsupplemented control diet. Liver AA concentrations were higher in fish fed diets with ≥16 mg AA equivalent of C2S or ≥9 mg AA equivalent of C2PP kg?1 than fish fed the control diet. Alternative pathway of complement activation (ACP) was higher in fish fed diets with ≥55 mg AA equivalent of C2S or ≥15 mg AA equivalent of C2PP kg?1 than fish fed the control diet. Lysozyme activity was higher in fish fed ≥86 mg AA equivalent of C2S or ≥15 mg AA equivalent of C2PP kg?1 than fish fed the control diet. Analysis by broken‐line regression of WG indicated that the adequate dietary vitamin C concentration from each vitamin C derivative in growing grouper is 46.2 mg AA equivalent of C2S kg?1 diet and 17.8 mg AA equivalent of C2PP kg?1 diet, and it also indicated that C2S is approximately 39% as effective as C2PP in meeting the vitamin C requirement for grouper. The data suggest that both C2S and C2PP supplementation support non‐specific immune responses of grouper.  相似文献   

4.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate two vitamin C derivatives, L‐ascorbyl‐2‐monophosphate‐Mg (C2MP‐Mg) and L‐ascorbyl‐2‐monophosphate‐Na (C2MP‐Na), to satisfy the vitamin C requirement and to test their effects on the immune responses of juvenile grouper, Epinephelus malabaricus. C2MP‐Mg and C2MP‐Na were each supplemented at 20, 50, 80, 150, 250, and 400 mg kg?1 diet in the basal diet providing of 7, 18, 31, 51, 93, 145 mg ascorbic acid (AA) equivalent of C2MP‐Mg kg?1 diet and 4, 10, 17, 31, 47, 77 mg ascorbic acid (AA) equivalent of C2MP‐Na kg?1 diet, respectively. Basal diet without AA supplementation was included as control. Each diet was fed to triplicate groups of grouper (mean initial weight 3.20 ± 0.05 g). Fish fed diets supplemented with either C2MP‐Mg or C2MP‐Na had significantly (P < 0.05) greater weight gain (WG), feed efficiency and survival than those fed the unsupplemented control diet. Liver ascorbate concentrations in fish generally increased as dietary C2MP‐Mg or C2MP‐Na supplementation level increased. Haemolytic complement activity was higher in fish fed diets supplemented with 92 mg AA equivalent of C2MP‐Mg kg?1 or 10–17 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Lysozyme activity was higher in fish fed ≥51 mg AA equivalent of C2MP‐Mg kg?1 or ≥47 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Analysis by broken‐line regression of WG indicated that the adequate dietary vitamin C concentration from each vitamin C derivative in growing grouper is 17.9 mg AA equivalent of 2MP‐Mg kg?1 and 8.3 mg AA equivalent of C2MP‐Na kg?1, and it also indicated that C2MP‐Mg is about 46% as effective as C2MP‐Na in meeting the vitamin C requirement of grouper.  相似文献   

6.
Despite the interest of meagre (Argyrosomus regius) as a fast‐growing candidate for Mediterranean aquaculture diversification, there is a lack of information on nutrition along larval development. Importance of highly unsaturated fatty acids (HUFA) and the antioxidant vitamins E and vitamin C has not been investigated yet in this species. Six diets with two levels of HUFA (0.4% and 3% dw), two of vitamin E (1500 and 3000 mg kg?1) and two of vitamin C (1800 and 3600 mg kg?1) were fed to 15 dah meagre larvae. Larval growth in total length and dry body weight was significantly lowest in larvae fed diet 0.4/150/180 and showed few lipid droplets in enterocytes and hepatocytes and lower HUFA contents than the initial larvae. Increase in dietary HUFA up to 3%, significantly improved larval growth and lipid absorption and deposition. Besides, among fish fed 3% HUFA, increase in vitamin E and vitamin C significantly improved body weight, as well as total lipid, 22:6n‐3 and n‐3 fatty acids contents in the larvae. Thus, the results showed that 0.4% dietary HUFA is not enough to cover the essential fatty acid requirements of larval meagre and a high HUFA requirement in weaning diets is foreseen for this species. Besides, the results also pointed out the importance of dietary vitamin E and C to protect these essential fatty acids from oxidation, increase their contents in the larvae and promote growth, suggesting high vitamin E and C requirements in meagre larvae (higher than 1500 and 1800 mg kg?1 for vitamin E and vitamin C respectively).  相似文献   

7.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

8.
We hypothesized that replacing fish oil with 18:3n-3-rich linseed oil may enable salmon to maintain the levels of tissue n-3HUFA levels through a combination of increased desaturation activity and increased substrate fatty acid provision. To this end we investigated desaturation/elongation of [1-14C18:3n-3 in hepatocytes and intestinal enterocytes, and determined the extent to which 18:3n-3 was oxidized and desaturated by measuring both simultaneously in a combined assay. Salmon smolts were stocked randomly into five seawater pens and fed for 40 weeks on diets in which the fish oil was replaced in a graded manner by linseed oil. At the end of the trial, fatty acyl desaturation/elongation and oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver and intestinal tissue were collected for analysis of lipid and fatty acid composition. The results showed that, despite increased desaturation of [1-14C]18:3n-3 in hepatocytes, provision of dietary 18:3n-3 did not prevent the decrease in tissue n-3HUFA in fish fed linseed oil. Intestinal enterocytes were a site of significant fatty acid desaturation but, in contrast to hepatocytes, the activity was not increased by feeding linseed oil and was generally lower in fish fed linseed oil compared to fish fed only fish oil. In contrast, oxidation of [1-14C]18:3n-3 in enterocytes was generally increased in fish fed linseed oil compared to fish fed the diet containing only fish oil. However, oxidation of [1-14C]18:3n-3 in hepatocytes was 4- to 8-fold lower than in enterocytes and was not affected by diet. Furthermore, oxidation of [1-14C]18:3n-3 in enterocytes exceeded desaturation irrespective of dietary treatment, whereas similar amounts of [1-14C]18:3n-3 were desaturated and oxidized in hepatocytes from fish fed only fish oil and desaturation exceeded oxidation by 3-fold in fish fed the diet containing 100% linseed oil. The molecular mechanisms underpinning these results were discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Herbivorous grass carp (Ctenopharyngodon idella) has been reported to exhibit low capacity to utilize high dietary lipid, but different lipid sources might affect this limited capacity. In order to compare the effects of different lipid sources with different lipid levels, juvenile grass carp were fed one of nine diets containing three oils [lard, plant oil mixed by maize and linseed oil, and n‐3 high unsaturated fatty acid‐enriched (HUFA‐enriched) fish oil] at three lipid levels (20, 60 and 100 g kg?1 dry diet) for 8 weeks. Decreased feed intake, poor growth performance, hepatic pathology and higher blood lipid peroxidation were found in 60 and 100 g kg?1 fish oil groups. Conversely, in lard and plant oil groups, even at 100 g kg?1 dietary lipid level, feed intake and growth performance did not decrease, despite histological observation revealed hepatic pathology in these groups. Plasma triglyceride and cholesterol contents increased significantly in all 100 g kg?1 dietary lipid groups. In the comparison of hepatic FA β‐oxidation among three oil groups at 60 g kg?1 dietary lipid level, impaired mitochondrial and peroxisomal FA oxidation capacity was observed in fish oil group. The results confirmed the relatively low capacity of grass carp to utilize high dietary lipid, and furthermore excess HUFA intake will result in more serious adverse effects than other FA.  相似文献   

10.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial weight 90 g, were fed four practical‐type diets in which the added oil was 1000 g kg?1 fish oil (FO) (control diet), 600 g kg?1 rapeseed oil (RO) and 400 g kg?1 FO, 600 g kg?1 linseed oil (LO) and 400 g kg?1 FO, and 600 g kg?1 olive oil (OO) and 400 g kg?1 FO for 34 weeks. After sampling, the remaining fish were switched to the 1000 g kg?1 FO diet for a further 14 weeks. Fatty acid composition of flesh total lipid was influenced by dietary fatty acid input but specific fatty acids were selectively retained or utilized. There was selective deposition and retention of docosahexaenoic acid (DHA; 22:6n‐3). Eicosapentaenoic acid (EPA; 20:5n‐3) and DHA were significantly reduced and linolenic (LNA; 18:3n‐3), linoleic (LA; 18:2n‐6) and oleic (OA; 18:1n‐9) acids significantly increased in flesh lipids following the inclusion of 600 g kg?1 RO, LO and OO in the diets. No significant differences were found among different treatments on plasma concentrations of prostaglandin E2 and prostaglandin F2α. Evaluation of non‐specific immune function, showed that the number of circulating leucocytes was significantly affected (P < 0.001), as was macrophage respiratory burst activity (P < 0.006) in fish fed vegetable oil diets. Accumulation of large amounts of lipid droplets were observed within the hepatocytes in relation to decreased levels of dietary n‐3 HUFA, although no signs of cellular necrosis was evident. After feeding a FO finishing diet for 14 weeks, DHA and total n‐3 HUFA levels were restored to values in control fish although EPA remained 18% higher in control than in the other treatments. This study suggests that vegetable oils such as RO, LO and OO can potentially be used as partial substitutes for dietary FO in European sea bass culture, during the grow out phase, without compromising growth rates but may alter some immune parameters.  相似文献   

11.
A 10‐week feeding trial was conducted to determine the optimal requirement of cobia (Rachycentron canadum Linneaus) for dietary ascorbic acid (AA). Graded levels of L‐ascorbyl‐2‐polyphosphate (LAPP) were supplemented in basal diet to formulate six semi‐purified diets containing 2.70 (the control diet), 8.47, 28.3, 80.6, 241 and 733 mg AA equivalent kg?1 diet, respectively. Each diet was randomly fed to triplicate groups of fish in flow‐through plastic tanks (300 L), and each tank was stocked with 25 fish with average initial weight of 4.59 ± 0.36 g. Observed deficiency signs included poor growth, higher mortality and lower feeding rate (FR) in the fish of the control group. Fish fed the control diet had significantly lower weight gain (WG), lower feed efficiency ratio (FER) and lower tissue AA concentrations in fish liver and muscle. With the increase of dietary AA, the survival, WG, FER, hepatic and muscular AA concentrations of cobia significantly increased and then levelled off. The dietary AA requirement of cobia was estimated to be 44.7 mg kg?1 based on WG, 53.9 mg kg?1 or 104 mg kg?1 based on either hepatic or muscular AA concentration, respectively.  相似文献   

12.
African catfish Clarias gariepinus (Burchell) fingerlings (3.16–3.92 g initial body weight) were investigated for 30 days in four different groups using different amounts of l ‐ascorbic acid (AA) and iron (supplied as FeC6H5O7) in their feedings. Diet 1 (control): no addition of AA or iron; diet 2 (H‐AA/FE): high (600 mg kg?1) AA and low (218 mg kg?1) iron; diet 3 (H‐HE/AA): high (364 mg kg?1) iron and low (200 mg kg?1) AA; and an unfed group, which was investigated only for 15 days due to high mortality. The live weight gain, feed intake, specific growth rate (SGR; % body weight day?1) and feed conversion rate (FCR) were measured or calculated. At the end of the experimental period, the whole body content of AA, iron, reduced glutathione (GSH), glutathione disulphide (GSSG) and malondialdehyde (MDA), as well as the glutathione peroxidase (GSHPx) activity, were measured. The production traits did not differ significantly as a result of the different AA and iron contents of the feed. AA content increased significantly in all the groups as compared with the initial value, except in the unfed group. The difference between the treated groups as compared with the control, with regard to the two AA/iron treated groups, was also significant. The iron content in the fish body increased significantly compared with the initial value, except in the unfed group. The difference compared with the control was significant only in the H‐FE/AA group. The difference between the groups that consumed low and high iron content diets was also significant. The GSH and GSSG content, as well as the GSH/GSSG ratio and GSHPx activity of the fish body, did not differ significantly as compared with the initial value or with the control. The lipid peroxide status, as measured by the MDA content, did not differ significantly either as an effect of the AA and iron supplementation, but decreased as an effect of ageing and starvation. It may be concluded that, under the present experimental conditions, the C. gariepinus fingerling tissue stores of AA and/or iron increased as a result of feed supplementation, but without altering the actual lipid peroxide status and the amount/activity of the glutathione redox system.  相似文献   

13.
An experiment was conducted to determine the effects of different levels of dietary vitamin C (VC) and E (VE) supplementation on fillet quality of red sea bream fed oxidized fish oil (OFO). Fish with an average body weight of 205.0 g were fed four test diets for 9 weeks. Control diet contained fresh fish oil (FFO) with 100 mg kg?1 of VE and 500 mg kg?1 of VC (FFO100E/500C). The other three diets contained OFO with varying levels of VE (mg kg?1) and VC (mg kg?1) (OFO100E/500C, OFO200E/500C and OFO200E/1000C). After feeding trial, two fillets from each fish by hand filleting were stored in a refrigerator at 4°C for 96 h during analyses. Results showed that fish fed OFO increased fillet thiobarbituric acid reactive substances (TBARS) and K‐value, and decreased fillet VC and VE concentrations during storage time. Supplementation of VC did not have any detectable effect on fillet quality. Increasing dietary VE supplementation increased fillet VE concentrations, reduced fillet TBARS and K‐value values of red sea bream. Therefore, we suggest that dietary supplementation of 200 mg kg?1 of vitamin E could improve fillet oxidative stability of red sea bream fed OFO.  相似文献   

14.
This experiment was conducted to study the effects of different dietary levels of vitamin C, L‐ascorbyl‐2‐polyphosphate (ASPP), on growth and tissue vitamin C concentrations in juvenile olive flounder, Paralichthys olivaceus (Temminck et Schlegel). Fish were fed one of six semi‐purified diets containing an equivalent of 0, 25, 50, 75, 150, or 1500 mg ascorbic acid (AA) kg?1 diet (C0, C25, C50, C75, C150 or C1500) in the form of ASPP for 12 weeks. Weight gain (WG) and protein efficiency ratio (PER) of fish fed the C0 diet were significantly lower than those of fish fed the other diets (P < 0.05), and WG and PER of fish fed the C25, C50 and C75 diets were significantly lower than those of fish fed the C1500 diet (P < 0.05). Fish fed the C0 diet exhibited vitamin C deficiency symptoms such as anorexia, scoliosis, cataract, exophthalmia and fin hemorrhage at the end of the 12‐week test. After 12 weeks of the feeding trial, AA concentrations from gill, kidney, and liver of fish fed the C0, C25, C50 and C75 diets were significantly lower than those of fish fed the C150 and C1500 diets (P < 0.05). Based on broken line analyses for WG and PER, the optimum dietary levels of vitamin C were 91 and 93 mg AA kg?1 diet respectively. These findings suggest that the dietary vitamin C requirement could be 93 mg AA kg?1 diet to support reasonable growth, and greater than 150 mg AA kg?1 diet may be required for AA saturation of major tissues for juvenile olive flounder under experimental conditions.  相似文献   

15.
A 60‐day experiment was carried out to study the effects of vitamin C [ascorbic acid (AA)] on the growth, digestive enzyme activities and intestinal microbial population. Diets with six levels (0.0, 21.4, 45.1, 69.5, 93.6 and 142.1 mg AA kg?1 diet) of supplemental ascorbyl polyphosphate were fed to juvenile Jian carp (Cyprinus carpio var. Jian) (12.63±0.02 g). The specific growth rate (SGR), feed efficiency and productive protein value were significantly improved with increasing AA levels up to 45.1 mg AA kg?1 diet (P<0.05). The hepatopancreas and muscle AA concentrations were increased with increasing dietary AA levels up to 69.5 and 45.1 mg kg?1 diet respectively (P<0.05). The activities of intestinal trypsin, chymotrypsin, lipase, α‐amylase, Na+, K+‐ATPase, alkaline phosphatase, gamma‐glutamyl transpeptidase and creatinkinase were all positively affected by the AA supplementation (P<0.05). Intestinal Lactobacillus and Bacillus were increased with increasing AA levels up to 45.1 mg AA kg?1 diet (P<0.05), while intestinal Escherichia coli decreased with increasing AA levels up to 45.1 mg AA kg?1 diet (P<0.05). In conclusion, AA improve the digestive capacity and intestinal microbial population of Jian carp, and the dietary AA requirement for SGR of juvenile Jian carp was 40.9 mg AA kg?1 diet.  相似文献   

16.
Juvenile barramundi (~220–280 g start weight) were fed extruded dry‐pelleted diets containing varying amounts of fish meal and meat meal in three experiments (E). E1 and E2 were each 66‐day farm studies utilizing 16 floating cages (400 fish per cage) in an aerated freshwater pond. E3 examined the same diets as fed in E2 but under controlled water temperature (28 ± 0.7 °C) and photoperiod (12:12) laboratory conditions in a 42‐day study involving 24 aquaria (eight fish per aquarium). In all studies, the same 430 g kg?1 crude protein (CP), 15 kJ g?1 digestible energy (DE) control (Ctl) diet (containing 35% Chilean anchovy fish meal) was compared with two high‐inclusion meat meal diets and a proprietary diet. The meat meal diets evaluated in E1 were a high‐ash (260 g kg?1) meat meal that contained 520 g kg?1 CP and a low‐ash (140 g kg?1) meat meal that contained 600 g kg?1 CP when included at either 450 or 400 g kg?1, respectively, in combination with 100 g kg?1 Chilean fish meal in diets that were isonitrogenous and isoenergetic with the Ctl diet. Growth rates and feed conversions were similar (P > 0.05) for all diets. In E2 and E3, the 520 g kg?1 CP meat meal was included at 500 g kg?1 without any marine protein source in diets formulated to provide either 15 or 16.2 kJ g?1 DE and the same CP/DE ratio (29 mg kJ?1) as the Ctl diet. Fish performance ranking of diets was similar in both experiments, with the 16.2 kJ g?1 DE diet supporting better (P < 0.05) growth rates than the Ctl diet and feed conversion ratios equivalent to the Ctl diet but better (P < 0.05) than all other diets.  相似文献   

17.
Postlarvae of tiger shrimp, Penaeus monodon (Fabricius), were fed semipurified diets supplemented with various levels of astaxanthin (AX) and ascorbic acid-polyphosphate (ApP): three groups were fed 230 mg AX kg?1 diet combined with 100, 1700 and 3400 mg ascorbic acid (AA) kg?1 diet, respectively; two diets contained 810 mg AX kg?1 mixed with 200 and 1700 mg AA kg?1, respectively. Each treatment was run in four replicates. Incorporated levels of AA and AX, production output, and physiological condition were recorded after 4 weeks of feeding. Whole-body AA (21-47 μg g?1) and AX, concentrations (19-35 μgg?1) were linked to dietary ApP and AX supply, respectively, although not significantly for the latter. The biomass of the group receiving the lower dietary ApP-AX combination was significantly lower than for all other treatments, i.e. 3.1 versus 3.9 g, respectively. In the groups fed 230 mg AX kg?1 diet, significant differences in stress resistance were observed according to the dietary ApP level, i.e. raising the vitamin C content in the feed from 100 to 3400 mg AA kg?1 resulted in a concomitant drop in mortality after an osmotic shock. For the treatments receiving 810 mg AX kg?1 diet, the beneficial effect of extra dietary vitamin C was not significant. An increase in the dietary AX for shrimp fed comparable ApP levels resulted in a significant drop of the stress index from 56 to 33 (cumulative mortality index). An increased resistance to salinity shock was demonstrated in association with supplementation of high dietary AA or AX levels. No conclusive results regarding possible improved disease resistance could be made since no mortality was observed after a disease challenge with Vibrio harveyi.  相似文献   

18.
A 9‐week feeding trial was conducted to determine the optimal dietary vitamin C requirement and its effects on serum enzymes activities and bacterial resistance in the juvenile yellow drum Nibea albiflora (initial weight 33.2 ± 0.10 g). Six practical diets were formulated containing vitamin C 2.1, 45.3, 89.6, 132.4, 178.6 and 547.1 mg kg?1 diet supplied as l ‐ascorbyl‐2‐monophosphate. The fish fed 547.1 mg kg?1 diet showed a significantly higher survival than that fed 2.1 mg kg?1 diet. The weight gains and specific growth rate of the fish fed 2.1 mg kg?1 diet were significantly lower than those of the fish fed 89.6–547.1 mg kg?1 diets. The liver vitamin C concentration firstly increased with increasing dietary vitamin C supply from 2.1 to 178.6 mg kg?1 diet and then stabilized. The serum superoxide dismutase activities of the fish fed 547.1 mg kg?1 diet were significantly lower than those of the fish fed 2.1–89.6 mg kg?1 diet. The fish fed 2.1 mg kg?1 diet had a significantly higher alkaline phosphatase activity than those in the other groups except the 45.3 mg kg?1 group. Fish that received diets containing vitamin C at 547.1 mg kg?1 had significantly higher nitro blue tetrazolium and lysozyme activity, and fish that received diets containing vitamin C at 45.3–547.1 mg kg?1 exhibited resistance against Vibrio alginolyticus infection. The dietary vitamin C requirement of the juvenile yellow drum was established based on broken‐line model of weight gain to be 142.2 mg l ‐ascorbyl‐2‐monophosphate kg?1 diet.  相似文献   

19.
Dietary ascorbic acid requirement of juvenile ayu (Plecoglossus altivelis)   总被引:1,自引:0,他引:1  
To investigate dietary ascorbic acid (AA) requirement of juvenile ayu (Plecoglossus altivelis) weighing 1.27 ± 0.02 g, eight diets were formulated with graded levels (0, 20, 40, 80, 160, 320, 640 and 1280 mg AA kg?1) of AA supplied as ascorbyl polyphosphate. Each experimental diet was fed to four‐replicate groups to apparent satiation three times a day for 8 weeks. At the end of the feeding trial, fish fed AA‐deficient diet showed visible AA deficiency signs and low survival. Based on the four‐parameter saturation kinetics model, the calculated AA requirement levels for each dose‐dependent response [weight gain, hepatic AA concentration, hydroxyproline (HyPro) concentration in skin and HyPro concentration in backbone] were 116, 226, 47 and 35 mg kg?1, respectively. Based on the maximal growth performance, a level of 116 mg AA kg?1 was recommended for commercial diet of juvenile ayu. To maintain tissue HyPro saturation and avoid AA deficiency symptoms, the minimum required dietary AA level was 47 mg kg?1. Hepatic AA saturation was considered as the most stringent criterion for determination of AA requirement.  相似文献   

20.
An 8‐week feeding trial was conducted in a recycling water system at 28 ± 1 °C to investigate protein to energy ratio (P/E ratio) in African catfish Clarias gariepinus (10.9 ± 0.04 g). Six fishmeal‐based diets of two protein levels (330 and 430 g kg?1), each with three lipid levels (40, 80 and 120 g kg?1) resulted in P/E ratios ranging from 15.5 to 21.3 mg protein kJ?1 gross energy (GE) were fed to 20 fish (per 30‐L tank) in triplicate. Fish were fed 50 g kg?1 of their body weight per day adjusted fortnightly. Significantly higher (P < 0.05) growth rates and feed conversion efficiency were evident in fish fed with higher protein diet. The highest growth rate was found by fish fed 430 g kg?1 protein, 21.2 kJ?1 GE with a P/E ratio of 20.5 mg protein kJ?1 GE. Significantly indifferent (P > 0.05) values of protein utilization were found in‐between the both (higher and lower) protein diets. Higher lipid deposition (P < 0.05) in whole body and liver was observed with increasing dietary lipid level at each protein diet and as higher (P < 0.05) for the lower protein diets. Liver glycogen tended to decrease with increasing gross energy at each protein diet and higher protein diet showed comparatively lower values (P > 0.05). Digestive enzyme activities (protease and lipase) and histological examination of intestine and liver of fish fed varying P/E diets found no significant differences in response to experimental diets. The study reveals that African catfish C. gariepinus performed best the diet containing 430 g kg?1, 21.2 kJ g?1 and 20.5 mg protein kJ g?1 GE protein, gross energy and P/E ratio, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号